an encyclopedia of finite element definitions

# Raviart–Thomas

 Alternative names Rao–Wilton–Glisson, Nédélec (first kind) H(div) Exterior calculus names $$\mathcal{P}^-_{k}\Lambda^{d-1}(\Delta_d)$$ Cockburn–fu names $$\left[S_{2,k}^\unicode{0x25FA}\right]_{d-1}$$ Abbreviated names RT, RWG Orders $$1\leqslant k$$ Reference elements triangle, tetrahedron Polynomial set $$\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(19)}_{k}$$↓ Show polynomial set definitions ↓ DOFs On each facet: normal integral moments with an order $$k-1$$ Lagrange space On the interior of the reference element: integral moments with an order $$k-2$$ vector Lagrange space Number of DOFs triangle: $$k(k+2)$$ (A005563)tetrahedron: $$k(k+1)(k+3)/2$$ (A077414) Categories Vector-valued elements, H(div) conforming elements

## Implementations

 Basix basix.ElementFamily.RT↓ Show Basix examples ↓ Bempp "RWG" (triangle)↓ Show Bempp examples ↓ Symfem "N1div"↓ Show Symfem examples ↓ UFL "RT"↓ Show UFL examples ↓

## Examples

triangle
order 1
triangle
order 2
tetrahedron
order 1
tetrahedron
order 2
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{2}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{0}$$
where $$e_{0}$$ is the 0th edge;
and $$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - x\\\displaystyle - y\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{1}$$
where $$e_{1}$$ is the 1st edge;
and $$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle x - 1\\\displaystyle y\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
and $$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle - x\\\displaystyle 1 - y\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle y^{2}\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{7}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 4 x \left(1 - 2 x\right)\\\displaystyle 2 y \left(1 - 4 x\right)\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 2 x \left(1 - 4 y\right)\\\displaystyle 4 y \left(1 - 2 y\right)\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle - 8 x^{2} - 8 x y + 12 x + 6 y - 4\\\displaystyle 2 y \left(- 4 x - 4 y + 3\right)\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 8 x y - 2 x - 6 y + 2\\\displaystyle 4 y \left(2 y - 1\right)\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 2 x \left(4 x + 4 y - 3\right)\\\displaystyle 8 x y - 6 x + 8 y^{2} - 12 y + 4\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 4 x \left(1 - 2 x\right)\\\displaystyle - 8 x y + 6 x + 2 y - 2\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 8 x \left(- 2 x - y + 2\right)\\\displaystyle 8 y \left(- 2 x - y + 1\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 8 x \left(- x - 2 y + 1\right)\\\displaystyle 8 y \left(- x - 2 y + 2\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle y\\\displaystyle z\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{3}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{0}$$
where $$f_{0}$$ is the 0th face;
and $$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 2 x\\\displaystyle 2 y\\\displaystyle 2 z\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{1}$$
where $$f_{1}$$ is the 1st face;
and $$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 2 - 2 x\\\displaystyle - 2 y\\\displaystyle - 2 z\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{2}$$
where $$f_{2}$$ is the 2nd face;
and $$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 2 x\\\displaystyle 2 y - 2\\\displaystyle 2 z\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{n}}_{3}$$
where $$f_{3}$$ is the 3th face;
and $$\hat{\boldsymbol{n}}_{3}$$ is the normal to facet 3.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle - 2 x\\\displaystyle - 2 y\\\displaystyle 2 - 2 z\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle x y\\\displaystyle x z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z\\\displaystyle y z\\\displaystyle z^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle y^{2}\\\displaystyle y z\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{14}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(- s_{0} - s_{1} + 1)\hat{\boldsymbol{n}}_{0}$$
where $$f_{0}$$ is the 0th face;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 6 x \left(5 x - 2\right)\\\displaystyle 6 y \left(5 x - 1\right)\\\displaystyle 6 z \left(5 x - 1\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{0}$$
where $$f_{0}$$ is the 0th face;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 6 x \left(5 y - 1\right)\\\displaystyle 6 y \left(5 y - 2\right)\\\displaystyle 6 z \left(5 y - 1\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(s_{1})\hat{\boldsymbol{n}}_{0}$$
where $$f_{0}$$ is the 0th face;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 6 x \left(5 z - 1\right)\\\displaystyle 6 y \left(5 z - 1\right)\\\displaystyle 6 z \left(5 z - 2\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(- s_{0} - s_{1} + 1)\hat{\boldsymbol{n}}_{1}$$
where $$f_{1}$$ is the 1st face;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 30 x^{2} + 30 x y + 30 x z - 48 x - 24 y - 24 z + 18\\\displaystyle 6 y \left(5 x + 5 y + 5 z - 4\right)\\\displaystyle 6 z \left(5 x + 5 y + 5 z - 4\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{1}$$
where $$f_{1}$$ is the 1st face;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle - 30 x y + 6 x + 24 y - 6\\\displaystyle 6 y \left(2 - 5 y\right)\\\displaystyle 6 z \left(1 - 5 y\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(s_{1})\hat{\boldsymbol{n}}_{1}$$
where $$f_{1}$$ is the 1st face;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle - 30 x z + 6 x + 24 z - 6\\\displaystyle 6 y \left(1 - 5 z\right)\\\displaystyle 6 z \left(2 - 5 z\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(- s_{0} - s_{1} + 1)\hat{\boldsymbol{n}}_{2}$$
where $$f_{2}$$ is the 2nd face;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 6 x \left(- 5 x - 5 y - 5 z + 4\right)\\\displaystyle - 30 x y + 24 x - 30 y^{2} - 30 y z + 48 y + 24 z - 18\\\displaystyle 6 z \left(- 5 x - 5 y - 5 z + 4\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{2}$$
where $$f_{2}$$ is the 2nd face;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 6 x \left(5 x - 2\right)\\\displaystyle 30 x y - 24 x - 6 y + 6\\\displaystyle 6 z \left(5 x - 1\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(s_{1})\hat{\boldsymbol{n}}_{2}$$
where $$f_{2}$$ is the 2nd face;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 6 x \left(5 z - 1\right)\\\displaystyle 30 y z - 6 y - 24 z + 6\\\displaystyle 6 z \left(5 z - 2\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(- s_{0} - s_{1} + 1)\hat{\boldsymbol{n}}_{3}$$
where $$f_{3}$$ is the 3th face;
$$\hat{\boldsymbol{n}}_{3}$$ is the normal to facet 3;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 6 x \left(5 x + 5 y + 5 z - 4\right)\\\displaystyle 6 y \left(5 x + 5 y + 5 z - 4\right)\\\displaystyle 30 x z - 24 x + 30 y z - 24 y + 30 z^{2} - 48 z + 18\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{3}$$
where $$f_{3}$$ is the 3th face;
$$\hat{\boldsymbol{n}}_{3}$$ is the normal to facet 3;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 6 x \left(2 - 5 x\right)\\\displaystyle 6 y \left(1 - 5 x\right)\\\displaystyle - 30 x z + 24 x + 6 z - 6\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(s_{1})\hat{\boldsymbol{n}}_{3}$$
where $$f_{3}$$ is the 3th face;
$$\hat{\boldsymbol{n}}_{3}$$ is the normal to facet 3;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 6 x \left(1 - 5 y\right)\\\displaystyle 6 y \left(2 - 5 y\right)\\\displaystyle - 30 y z + 24 y + 6 z - 6\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 30 x \left(- 2 x - y - z + 2\right)\\\displaystyle 30 y \left(- 2 x - y - z + 1\right)\\\displaystyle 30 z \left(- 2 x - y - z + 1\right)\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 30 x \left(- x - 2 y - z + 1\right)\\\displaystyle 30 y \left(- x - 2 y - z + 2\right)\\\displaystyle 30 z \left(- x - 2 y - z + 1\right)\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 30 x \left(- x - y - 2 z + 1\right)\\\displaystyle 30 y \left(- x - y - 2 z + 1\right)\\\displaystyle 30 z \left(- x - y - 2 z + 2\right)\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.

## References

• Raviart, Pierre-Arnaud and Thomas, Jean-Marie. A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (eds: Galligani, Ilio and Magenes, Enrico), 1977. [BibTeX]
• Nédélec, Jean-Claude. Mixed finite elements in $$\mathbb{R}^3$$, Numerische Mathematik 35(3), 315–341, 1980. [DOI: 10.1007/BF01396415] [BibTeX]
• Rao, S. S. M., Wilton, Donald R., and Glisson, Allen W. Electromagnetic scattering by surfaces of arbitrary shape, IEEE transactions on antennas and propagation 30, 409–418, 1982. [DOI: 10.1109/TAP.1982.1142818] [BibTeX]
• Arnold, Douglas N. and Logg, Anders. Periodic table of the finite elements, SIAM News 47, 2014. [sinews.siam.org/Details-Page/periodic-table-of-the-finite-elements] [BibTeX]
• Cockburn, Bernardo and Fu, Guosheng. A systematic construction of finite element commuting exact sequences, SIAM journal on numerical analysis 55, 1650–1688, 2017. [DOI: 10.1137/16M1073352] [BibTeX]

## DefElement stats

 Element added 30 December 2020 Element last updated 10 February 2022