an encyclopedia of finite element definitions

# Vector Lagrange

 Orders $$0\leqslant k$$ Reference elements triangle, tetrahedron Polynomial set $$\mathcal{P}_{k}^d$$↓ Show polynomial set definitions ↓ DOFs On each vertex: point evaluations in coordinate directions On each edge: point evaluations in coordinate directions On each face: point evaluations in coordinate directions On each volume: point evaluations in coordinate directions Number of DOFs triangle: $$(k+1)(k+2)$$ (A002378)tetrahedron: $$(k+1)(k+2)(k+3)/2$$ (A027480) Categories Vector-valued elements

## Implementations

 Symfem "vector Lagrange"↓ Show Symfem examples ↓ UFL "Lagrange"↓ Show UFL examples ↓

## Examples

triangle
order 1
triangle
order 2
tetrahedron
order 1
tetrahedron
order 2
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{5}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - x - y + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - x - y + 1\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element.
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2}\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{11}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 2 x^{2} + 4 x y - 3 x + 2 y^{2} - 3 y + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x^{2} + 4 x y - 3 x + 2 y^{2} - 3 y + 1\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x \left(2 x - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(2 x - 1\right)\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y \left(2 y - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y \left(2 y - 1\right)\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 4 x y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x y\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 4 y \left(- x - y + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y \left(- x - y + 1\right)\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 4 x \left(- x - y + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element. $$\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x \left(- x - y + 1\right)\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{11}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - x - y - z + 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - x - y - z + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - x - y - z + 1\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z^{2}\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{29}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 2 x^{2} + 4 x y + 4 x z - 3 x + 2 y^{2} + 4 y z - 3 y + 2 z^{2} - 3 z + 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x^{2} + 4 x y + 4 x z - 3 x + 2 y^{2} + 4 y z - 3 y + 2 z^{2} - 3 z + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x^{2} + 4 x y + 4 x z - 3 x + 2 y^{2} + 4 y z - 3 y + 2 z^{2} - 3 z + 1\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle x \left(2 x - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(2 x - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x \left(2 x - 1\right)\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle y \left(2 y - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y \left(2 y - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y \left(2 y - 1\right)\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle z \left(2 z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z \left(2 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z \left(2 z - 1\right)\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{12}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 4 y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{13}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y z\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{14}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 y z\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{15}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 4 x z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{16}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x z\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{17}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 x z\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{18}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2},0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 4 x y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element. $$\displaystyle l_{19}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element. $$\displaystyle l_{20}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 x y\end{array}\right)$$

This DOF is associated with edge 2 of the reference element. $$\displaystyle l_{21}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle 4 z \left(- x - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element. $$\displaystyle l_{22}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 z \left(- x - y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element. $$\displaystyle l_{23}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 z \left(- x - y - z + 1\right)\end{array}\right)$$

This DOF is associated with edge 3 of the reference element. $$\displaystyle l_{24}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle 4 y \left(- x - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 4 of the reference element. $$\displaystyle l_{25}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y \left(- x - y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 4 of the reference element. $$\displaystyle l_{26}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 y \left(- x - y - z + 1\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element. $$\displaystyle l_{27}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle 4 x \left(- x - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 5 of the reference element. $$\displaystyle l_{28}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x \left(- x - y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 5 of the reference element. $$\displaystyle l_{29}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 x \left(- x - y - z + 1\right)\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.

## DefElement stats

 Element added 30 December 2020 Element last updated 05 June 2021