an encyclopedia of finite element definitions

# Nédélec (first kind)

 Alternative names Whitney (triangle,tetrahedron), Nédélec, Q H(curl) (quadrilateral,hexahedron), Raviart–Thomas cubical H(curl) (quadrilateral), Nédélec cubical H(curl) (hexahedron) Exterior calculus names $$\mathcal{P}^-_{k}\Lambda^{1}(\Delta_d)$$, $$\mathcal{Q}^-_{k}\Lambda^{1}(\square_d)$$ Cockburn–fu names $$\left[S_{2,k}^\unicode{0x25FA}\right]_{1}$$, $$\left[S_{4,k}^\square\right]_{1}$$ Abbreviated names N1curl, NC, RTce (quadrilateral), Nce (hexahedron) Orders $$1\leqslant k$$ Reference elements triangle, tetrahedron, quadrilateral, hexahedron, prism Polynomial set $$\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(7)}_{k}$$ (triangle, tetrahedron) $$\mathcal{Q}_{k-1}^d \oplus \mathcal{Z}^{(8)}_{k}$$ (quadrilateral) $$\mathcal{Q}_{k}^d \oplus \mathcal{Z}^{(8)}_{k}$$ (hexahedron) ↓ Show polynomial set definitions ↓ DOFs On each edge: tangent integral moments with an order $$k-1$$ Lagrange space On each face (triangle): integral moments with an order $$k-2$$ vector Lagrange space On each face (quadrilateral): integral moments with an order $$k-1$$ Q H(div) space On each volume (tetrahedron): integral moments with an order $$k-3$$ vector Lagrange space On each volume (hexahedron): integral moments with an order $$k-1$$ Q H(div) space Number of DOFs triangle: $$k(k+2)$$ (A005563)tetrahedron: $$k(k+2)(k+3)/2$$ (A005564)quadrilateral: $$2k(k+1)$$ (A046092)hexahedron: $$3k(k+1)^2$$ (A059986)prism: $$3k(k+2)(k+1)/2$$ Categories Vector-valued elements, H(curl) conforming elements

## Implementations

 Basix basix.ElementFamily.N1E (triangle, tetrahedron, quadrilateral, hexahedron)↓ Show Basix examples ↓ Bempp "SNC" (triangle)↓ Show Bempp examples ↓ Symfem "N1curl" (triangle, tetrahedron)"Qcurl" (quadrilateral, hexahedron)"Ncurl" (prism)↓ Show Symfem examples ↓ UFL "N1curl" (triangle, tetrahedron)"RTCE" (quadrilateral)"NCE" (hexahedron)↓ Show UFL examples ↓

## Examples

triangle
order 1
triangle
order 2
order 1
order 2
tetrahedron
order 1
tetrahedron
order 2
hexahedron
order 1
hexahedron
order 2
prism
order 1
prism
order 2
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle - x\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{2}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
and $$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - y\\\displaystyle x\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
and $$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 1 - x\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
and $$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 1 - y\\\displaystyle x\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle - x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle - x y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{7}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 2 y \left(1 - 4 x\right)\\\displaystyle 4 x \left(2 x - 1\right)\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 4 y \left(1 - 2 y\right)\\\displaystyle 2 x \left(4 y - 1\right)\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 2 y \left(- 4 x - 4 y + 3\right)\\\displaystyle 8 x^{2} + 8 x y - 12 x - 6 y + 4\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 4 y \left(2 y - 1\right)\\\displaystyle - 8 x y + 2 x + 6 y - 2\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 8 x y - 6 x + 8 y^{2} - 12 y + 4\\\displaystyle 2 x \left(- 4 x - 4 y + 3\right)\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle - 8 x y + 6 x + 2 y - 2\\\displaystyle 4 x \left(2 x - 1\right)\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 8 y \left(- x - 2 y + 2\right)\\\displaystyle 8 x \left(x + 2 y - 1\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 8 y \left(2 x + y - 1\right)\\\displaystyle 8 x \left(- 2 x - y + 2\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
• $$R$$ is the reference quadrilateral. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{3}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
and $$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 1 - y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
and $$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 1 - x\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
and $$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
and $$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
• $$R$$ is the reference quadrilateral. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{11}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 18 x y^{2} + 24 x y - 6 x + 12 y^{2} - 16 y + 4\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 18 x y^{2} - 24 x y + 6 x - 6 y^{2} + 8 y - 2\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 18 x^{2} y + 12 x^{2} + 24 x y - 16 x - 6 y + 4\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 18 x^{2} y - 6 x^{2} - 24 x y + 8 x + 6 y - 2\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x \left(- 9 x y + 6 x + 6 y - 4\right)\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x \left(9 x y - 3 x - 6 y + 2\right)\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 2 y \left(- 9 x y + 6 x + 6 y - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 2 y \left(9 x y - 6 x - 3 y + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1 - s_{1}\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1})$$ is a parametrisation of $$R(2)$$.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x \left(3 x y - 2 x - 3 y + 2\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0} - 1\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1})$$ is a parametrisation of $$R(2)$$.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 12 y \left(- 3 x y + 3 x + 2 y - 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}- s_{0}\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1})$$ is a parametrisation of $$R(2)$$.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 12 y \left(3 x y - 3 x - y + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{1}\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1})$$ is a parametrisation of $$R(2)$$.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x \left(- 3 x y + x + 3 y - 1\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle - x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle - y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle - x\\\displaystyle 0\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{5}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
and $$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - z\\\displaystyle y\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
and $$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - z\\\displaystyle 0\\\displaystyle x\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
and $$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle - y\\\displaystyle x\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
and $$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle z\\\displaystyle z\\\displaystyle - x - y + 1\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
and $$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y\\\displaystyle - x - z + 1\\\displaystyle y\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
and $$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle - y - z + 1\\\displaystyle x\\\displaystyle x\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z^{2}\\\displaystyle 0\\\displaystyle - x z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z\\\displaystyle 0\\\displaystyle - x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle - x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle - y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z\\\displaystyle - y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle - x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle - x^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle - x y\\\displaystyle 0\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{19}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 z \left(1 - 4 y\right)\\\displaystyle 4 y \left(2 y - 1\right)\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 z \left(1 - 2 z\right)\\\displaystyle 2 y \left(4 z - 1\right)\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 2 z \left(1 - 4 x\right)\\\displaystyle 0\\\displaystyle 4 x \left(2 x - 1\right)\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 4 z \left(1 - 2 z\right)\\\displaystyle 0\\\displaystyle 2 x \left(4 z - 1\right)\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 2 y \left(1 - 4 x\right)\\\displaystyle 4 x \left(2 x - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 4 y \left(1 - 2 y\right)\\\displaystyle 2 x \left(4 y - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 2 z \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 2 z \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 8 x^{2} + 16 x y + 8 x z - 12 x + 8 y^{2} + 8 y z - 12 y - 6 z + 4\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 4 z \left(2 z - 1\right)\\\displaystyle 4 z \left(2 z - 1\right)\\\displaystyle - 8 x z + 2 x - 8 y z + 2 y + 6 z - 2\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
$$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4;
and $$s_{0}$$ is a parametrisation of $$e_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 2 y \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 8 x^{2} + 8 x y + 16 x z - 12 x + 8 y z - 6 y + 8 z^{2} - 12 z + 4\\\displaystyle 2 y \left(- 4 x - 4 y - 4 z + 3\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
$$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4;
and $$s_{0}$$ is a parametrisation of $$e_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 4 y \left(2 y - 1\right)\\\displaystyle - 8 x y + 2 x - 8 y z + 6 y + 2 z - 2\\\displaystyle 4 y \left(2 y - 1\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
$$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5;
and $$s_{0}$$ is a parametrisation of $$e_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 8 x y + 8 x z - 6 x + 8 y^{2} + 16 y z - 12 y + 8 z^{2} - 12 z + 4\\\displaystyle 2 x \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 2 x \left(- 4 x - 4 y - 4 z + 3\right)\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
$$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5;
and $$s_{0}$$ is a parametrisation of $$e_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle - 8 x y - 8 x z + 6 x + 2 y + 2 z - 2\\\displaystyle 4 x \left(2 x - 1\right)\\\displaystyle 4 x \left(2 x - 1\right)\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face.

$$\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle - 8 y z\\\displaystyle 16 x z\\\displaystyle - 8 x y\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}- \frac{\sqrt{3}}{3}\\0\\\frac{\sqrt{3}}{3}\end{array}\right)$$
where $$f_{0}$$ is the 0th face.

$$\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle - 8 y z\\\displaystyle - 8 x z\\\displaystyle 16 x y\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$
where $$f_{1}$$ is the 1st face.

$$\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 8 y z\\\displaystyle 8 z \left(- 2 x - y - 2 z + 2\right)\\\displaystyle 8 y \left(x + y + 2 z - 1\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$
where $$f_{1}$$ is the 1st face.

$$\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 8 y z\\\displaystyle 8 z \left(x + 2 y + z - 1\right)\\\displaystyle 8 y \left(- 2 x - 2 y - z + 2\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{16}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$
where $$f_{2}$$ is the 2nd face.

$$\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 8 z \left(- x - 2 y - 2 z + 2\right)\\\displaystyle 8 x z\\\displaystyle 8 x \left(x + y + 2 z - 1\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{17}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$
where $$f_{2}$$ is the 2nd face.

$$\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 8 z \left(2 x + y + z - 1\right)\\\displaystyle 8 x z\\\displaystyle 8 x \left(- 2 x - 2 y - z + 2\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{18}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$
where $$f_{3}$$ is the 3th face.

$$\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 8 y \left(- x - 2 y - 2 z + 2\right)\\\displaystyle 8 x \left(x + 2 y + z - 1\right)\\\displaystyle 8 x y\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{19}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$
where $$f_{3}$$ is the 3th face.

$$\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 8 y \left(2 x + y + z - 1\right)\\\displaystyle 8 x \left(- 2 x - y - 2 z + 2\right)\\\displaystyle 8 x y\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
• $$R$$ is the reference hexahedron. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{11}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
and $$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle y z - y - z + 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
and $$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x z - x - z + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
and $$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y - x - y + 1\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
and $$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(1 - z\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
and $$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x \left(1 - y\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
and $$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle y \left(1 - z\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{6}$$
where $$e_{6}$$ is the 6th edge;
and $$\hat{\boldsymbol{t}}_{6}$$ is the tangent to edge 6.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y \left(1 - x\right)\end{array}\right)$$

This DOF is associated with edge 6 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{7}$$
where $$e_{7}$$ is the 7th edge;
and $$\hat{\boldsymbol{t}}_{7}$$ is the tangent to edge 7.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)$$

This DOF is associated with edge 7 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{8}$$
where $$e_{8}$$ is the 8th edge;
and $$\hat{\boldsymbol{t}}_{8}$$ is the tangent to edge 8.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle z \left(1 - y\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 8 of the reference element.
$$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{9}$$
where $$e_{9}$$ is the 9th edge;
and $$\hat{\boldsymbol{t}}_{9}$$ is the tangent to edge 9.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z \left(1 - x\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 9 of the reference element.
$$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{10}$$
where $$e_{10}$$ is the 10th edge;
and $$\hat{\boldsymbol{t}}_{10}$$ is the tangent to edge 10.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 10 of the reference element.
$$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{11}$$
where $$e_{11}$$ is the 11th edge;
and $$\hat{\boldsymbol{t}}_{11}$$ is the tangent to edge 11.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 11 of the reference element.
• $$R$$ is the reference hexahedron. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2} z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2} z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y^{2} z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y^{2} z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} y z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2} y z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y^{2} z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y^{2} z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2} z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2} y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2} y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2} y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2} y^{2} z\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{53}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 54 x y^{2} z^{2} + 72 x y^{2} z - 18 x y^{2} + 72 x y z^{2} - 96 x y z + 24 x y - 18 x z^{2} + 24 x z - 6 x + 36 y^{2} z^{2} - 48 y^{2} z + 12 y^{2} - 48 y z^{2} + 64 y z - 16 y + 12 z^{2} - 16 z + 4\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 54 x y^{2} z^{2} - 72 x y^{2} z + 18 x y^{2} - 72 x y z^{2} + 96 x y z - 24 x y + 18 x z^{2} - 24 x z + 6 x - 18 y^{2} z^{2} + 24 y^{2} z - 6 y^{2} + 24 y z^{2} - 32 y z + 8 y - 6 z^{2} + 8 z - 2\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 54 x^{2} y z^{2} + 72 x^{2} y z - 18 x^{2} y + 36 x^{2} z^{2} - 48 x^{2} z + 12 x^{2} + 72 x y z^{2} - 96 x y z + 24 x y - 48 x z^{2} + 64 x z - 16 x - 18 y z^{2} + 24 y z - 6 y + 12 z^{2} - 16 z + 4\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 54 x^{2} y z^{2} - 72 x^{2} y z + 18 x^{2} y - 18 x^{2} z^{2} + 24 x^{2} z - 6 x^{2} - 72 x y z^{2} + 96 x y z - 24 x y + 24 x z^{2} - 32 x z + 8 x + 18 y z^{2} - 24 y z + 6 y - 6 z^{2} + 8 z - 2\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 54 x^{2} y^{2} z + 36 x^{2} y^{2} + 72 x^{2} y z - 48 x^{2} y - 18 x^{2} z + 12 x^{2} + 72 x y^{2} z - 48 x y^{2} - 96 x y z + 64 x y + 24 x z - 16 x - 18 y^{2} z + 12 y^{2} + 24 y z - 16 y - 6 z + 4\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 54 x^{2} y^{2} z - 18 x^{2} y^{2} - 72 x^{2} y z + 24 x^{2} y + 18 x^{2} z - 6 x^{2} - 72 x y^{2} z + 24 x y^{2} + 96 x y z - 32 x y - 24 x z + 8 x + 18 y^{2} z - 6 y^{2} - 24 y z + 8 y + 6 z - 2\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x \left(- 27 x y z^{2} + 36 x y z - 9 x y + 18 x z^{2} - 24 x z + 6 x + 18 y z^{2} - 24 y z + 6 y - 12 z^{2} + 16 z - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x \left(27 x y z^{2} - 36 x y z + 9 x y - 9 x z^{2} + 12 x z - 3 x - 18 y z^{2} + 24 y z - 6 y + 6 z^{2} - 8 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
$$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4;
and $$s_{0}$$ is a parametrisation of $$e_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x \left(- 27 x y^{2} z + 18 x y^{2} + 36 x y z - 24 x y - 9 x z + 6 x + 18 y^{2} z - 12 y^{2} - 24 y z + 16 y + 6 z - 4\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
$$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4;
and $$s_{0}$$ is a parametrisation of $$e_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x \left(27 x y^{2} z - 9 x y^{2} - 36 x y z + 12 x y + 9 x z - 3 x - 18 y^{2} z + 6 y^{2} + 24 y z - 8 y - 6 z + 2\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
$$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5;
and $$s_{0}$$ is a parametrisation of $$e_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 2 y \left(- 27 x y z^{2} + 36 x y z - 9 x y + 18 x z^{2} - 24 x z + 6 x + 18 y z^{2} - 24 y z + 6 y - 12 z^{2} + 16 z - 4\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
$$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5;
and $$s_{0}$$ is a parametrisation of $$e_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 2 y \left(27 x y z^{2} - 36 x y z + 9 x y - 18 x z^{2} + 24 x z - 6 x - 9 y z^{2} + 12 y z - 3 y + 6 z^{2} - 8 z + 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{6}$$
where $$e_{6}$$ is the 6th edge;
$$\hat{\boldsymbol{t}}_{6}$$ is the tangent to edge 6;
and $$s_{0}$$ is a parametrisation of $$e_{6}$$.

$$\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 y \left(- 27 x^{2} y z + 18 x^{2} y + 18 x^{2} z - 12 x^{2} + 36 x y z - 24 x y - 24 x z + 16 x - 9 y z + 6 y + 6 z - 4\right)\end{array}\right)$$

This DOF is associated with edge 6 of the reference element.
$$\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{6}$$
where $$e_{6}$$ is the 6th edge;
$$\hat{\boldsymbol{t}}_{6}$$ is the tangent to edge 6;
and $$s_{0}$$ is a parametrisation of $$e_{6}$$.

$$\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 y \left(27 x^{2} y z - 9 x^{2} y - 18 x^{2} z + 6 x^{2} - 36 x y z + 12 x y + 24 x z - 8 x + 9 y z - 3 y - 6 z + 2\right)\end{array}\right)$$

This DOF is associated with edge 6 of the reference element.
$$\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{7}$$
where $$e_{7}$$ is the 7th edge;
$$\hat{\boldsymbol{t}}_{7}$$ is the tangent to edge 7;
and $$s_{0}$$ is a parametrisation of $$e_{7}$$.

$$\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x y \left(- 27 x y z + 18 x y + 18 x z - 12 x + 18 y z - 12 y - 12 z + 8\right)\end{array}\right)$$

This DOF is associated with edge 7 of the reference element.
$$\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{7}$$
where $$e_{7}$$ is the 7th edge;
$$\hat{\boldsymbol{t}}_{7}$$ is the tangent to edge 7;
and $$s_{0}$$ is a parametrisation of $$e_{7}$$.

$$\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x y \left(27 x y z - 9 x y - 18 x z + 6 x - 18 y z + 6 y + 12 z - 4\right)\end{array}\right)$$

This DOF is associated with edge 7 of the reference element.
$$\displaystyle l_{16}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{8}$$
where $$e_{8}$$ is the 8th edge;
$$\hat{\boldsymbol{t}}_{8}$$ is the tangent to edge 8;
and $$s_{0}$$ is a parametrisation of $$e_{8}$$.

$$\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 2 z \left(- 27 x y^{2} z + 18 x y^{2} + 36 x y z - 24 x y - 9 x z + 6 x + 18 y^{2} z - 12 y^{2} - 24 y z + 16 y + 6 z - 4\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 8 of the reference element.
$$\displaystyle l_{17}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{8}$$
where $$e_{8}$$ is the 8th edge;
$$\hat{\boldsymbol{t}}_{8}$$ is the tangent to edge 8;
and $$s_{0}$$ is a parametrisation of $$e_{8}$$.

$$\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 2 z \left(27 x y^{2} z - 18 x y^{2} - 36 x y z + 24 x y + 9 x z - 6 x - 9 y^{2} z + 6 y^{2} + 12 y z - 8 y - 3 z + 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 8 of the reference element.
$$\displaystyle l_{18}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{9}$$
where $$e_{9}$$ is the 9th edge;
$$\hat{\boldsymbol{t}}_{9}$$ is the tangent to edge 9;
and $$s_{0}$$ is a parametrisation of $$e_{9}$$.

$$\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 z \left(- 27 x^{2} y z + 18 x^{2} y + 18 x^{2} z - 12 x^{2} + 36 x y z - 24 x y - 24 x z + 16 x - 9 y z + 6 y + 6 z - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 9 of the reference element.
$$\displaystyle l_{19}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{9}$$
where $$e_{9}$$ is the 9th edge;
$$\hat{\boldsymbol{t}}_{9}$$ is the tangent to edge 9;
and $$s_{0}$$ is a parametrisation of $$e_{9}$$.

$$\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 z \left(27 x^{2} y z - 18 x^{2} y - 9 x^{2} z + 6 x^{2} - 36 x y z + 24 x y + 12 x z - 8 x + 9 y z - 6 y - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 9 of the reference element.
$$\displaystyle l_{20}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{10}$$
where $$e_{10}$$ is the 10th edge;
$$\hat{\boldsymbol{t}}_{10}$$ is the tangent to edge 10;
and $$s_{0}$$ is a parametrisation of $$e_{10}$$.

$$\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x z \left(- 27 x y z + 18 x y + 18 x z - 12 x + 18 y z - 12 y - 12 z + 8\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 10 of the reference element.
$$\displaystyle l_{21}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{10}$$
where $$e_{10}$$ is the 10th edge;
$$\hat{\boldsymbol{t}}_{10}$$ is the tangent to edge 10;
and $$s_{0}$$ is a parametrisation of $$e_{10}$$.

$$\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x z \left(27 x y z - 18 x y - 9 x z + 6 x - 18 y z + 12 y + 6 z - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 10 of the reference element.
$$\displaystyle l_{22}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{11}$$
where $$e_{11}$$ is the 11th edge;
$$\hat{\boldsymbol{t}}_{11}$$ is the tangent to edge 11;
and $$s_{0}$$ is a parametrisation of $$e_{11}$$.

$$\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle 2 y z \left(- 27 x y z + 18 x y + 18 x z - 12 x + 18 y z - 12 y - 12 z + 8\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 11 of the reference element.
$$\displaystyle l_{23}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{11}$$
where $$e_{11}$$ is the 11th edge;
$$\hat{\boldsymbol{t}}_{11}$$ is the tangent to edge 11;
and $$s_{0}$$ is a parametrisation of $$e_{11}$$.

$$\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle 2 y z \left(27 x y z - 18 x y - 18 x z + 12 x - 9 y z + 6 y + 6 z - 4\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 11 of the reference element.
$$\displaystyle l_{24}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1 - s_{1}\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x \left(9 x y z^{2} - 12 x y z + 3 x y - 6 x z^{2} + 8 x z - 2 x - 9 y z^{2} + 12 y z - 3 y + 6 z^{2} - 8 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{25}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0} - 1\\0\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle 12 y \left(- 9 x y z^{2} + 12 x y z - 3 x y + 9 x z^{2} - 12 x z + 3 x + 6 y z^{2} - 8 y z + 2 y - 6 z^{2} + 8 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{26}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}- s_{0}\\0\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle 12 y \left(9 x y z^{2} - 12 x y z + 3 x y - 9 x z^{2} + 12 x z - 3 x - 3 y z^{2} + 4 y z - y + 3 z^{2} - 4 z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{27}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{1}\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x \left(- 9 x y z^{2} + 12 x y z - 3 x y + 3 x z^{2} - 4 x z + x + 9 y z^{2} - 12 y z + 3 y - 3 z^{2} + 4 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{28}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{1}\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x \left(9 x y^{2} z - 6 x y^{2} - 12 x y z + 8 x y + 3 x z - 2 x - 9 y^{2} z + 6 y^{2} + 12 y z - 8 y - 3 z + 2\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{29}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0} - 1\\0\\0\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle 12 z \left(- 9 x y^{2} z + 9 x y^{2} + 12 x y z - 12 x y - 3 x z + 3 x + 6 y^{2} z - 6 y^{2} - 8 y z + 8 y + 2 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{30}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}- s_{0}\\0\\0\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{30} = \left(\begin{array}{c}\displaystyle 12 z \left(9 x y^{2} z - 9 x y^{2} - 12 x y z + 12 x y + 3 x z - 3 x - 3 y^{2} z + 3 y^{2} + 4 y z - 4 y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{31}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1}\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{31} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x \left(- 9 x y^{2} z + 3 x y^{2} + 12 x y z - 4 x y - 3 x z + x + 9 y^{2} z - 3 y^{2} - 12 y z + 4 y + 3 z - 1\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{32}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{1}\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{32} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 y \left(9 x^{2} y z - 6 x^{2} y - 9 x^{2} z + 6 x^{2} - 12 x y z + 8 x y + 12 x z - 8 x + 3 y z - 2 y - 3 z + 2\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{33}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0} - 1\\0\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{33} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 z \left(- 9 x^{2} y z + 9 x^{2} y + 6 x^{2} z - 6 x^{2} + 12 x y z - 12 x y - 8 x z + 8 x - 3 y z + 3 y + 2 z - 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{34}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\- s_{0}\\0\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{34} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 z \left(9 x^{2} y z - 9 x^{2} y - 3 x^{2} z + 3 x^{2} - 12 x y z + 12 x y + 4 x z - 4 x + 3 y z - 3 y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{35}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1}\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{35} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 y \left(- 9 x^{2} y z + 3 x^{2} y + 9 x^{2} z - 3 x^{2} + 12 x y z - 4 x y - 12 x z + 4 x - 3 y z + y + 3 z - 1\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{36}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{1}\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{36} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x y \left(9 x y z - 6 x y - 9 x z + 6 x - 6 y z + 4 y + 6 z - 4\right)\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{37}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0} - 1\\0\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{37} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x z \left(- 9 x y z + 9 x y + 6 x z - 6 x + 6 y z - 6 y - 4 z + 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{38}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\- s_{0}\\0\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{38} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x z \left(9 x y z - 9 x y - 3 x z + 3 x - 6 y z + 6 y + 2 z - 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{39}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1}\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{39} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x y \left(- 9 x y z + 3 x y + 9 x z - 3 x + 6 y z - 2 y - 6 z + 2\right)\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{40}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{1}\end{array}\right)$$
where $$f_{4}$$ is the 4th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{40} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x y \left(9 x y z - 6 x y - 6 x z + 4 x - 9 y z + 6 y + 6 z - 4\right)\end{array}\right)$$

This DOF is associated with face 4 of the reference element.
$$\displaystyle l_{41}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0} - 1\\0\\0\end{array}\right)$$
where $$f_{4}$$ is the 4th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{41} = \left(\begin{array}{c}\displaystyle 12 y z \left(- 9 x y z + 9 x y + 6 x z - 6 x + 6 y z - 6 y - 4 z + 4\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 4 of the reference element.
$$\displaystyle l_{42}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}- s_{0}\\0\\0\end{array}\right)$$
where $$f_{4}$$ is the 4th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{42} = \left(\begin{array}{c}\displaystyle 12 y z \left(9 x y z - 9 x y - 6 x z + 6 x - 3 y z + 3 y + 2 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 4 of the reference element.
$$\displaystyle l_{43}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1}\end{array}\right)$$
where $$f_{4}$$ is the 4th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{43} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x y \left(- 9 x y z + 3 x y + 6 x z - 2 x + 9 y z - 3 y - 6 z + 2\right)\end{array}\right)$$

This DOF is associated with face 4 of the reference element.
$$\displaystyle l_{44}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1 - s_{1}\\0\end{array}\right)$$
where $$f_{5}$$ is the 5th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{44} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x z \left(9 x y z - 6 x y - 6 x z + 4 x - 9 y z + 6 y + 6 z - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 5 of the reference element.
$$\displaystyle l_{45}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0} - 1\\0\\0\end{array}\right)$$
where $$f_{5}$$ is the 5th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{45} = \left(\begin{array}{c}\displaystyle 12 y z \left(- 9 x y z + 6 x y + 9 x z - 6 x + 6 y z - 4 y - 6 z + 4\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 5 of the reference element.
$$\displaystyle l_{46}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot\left(\begin{array}{c}- s_{0}\\0\\0\end{array}\right)$$
where $$f_{5}$$ is the 5th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{46} = \left(\begin{array}{c}\displaystyle 12 y z \left(9 x y z - 6 x y - 9 x z + 6 x - 3 y z + 2 y + 3 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 5 of the reference element.
$$\displaystyle l_{47}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{1}\\0\end{array}\right)$$
where $$f_{5}$$ is the 5th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{47} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x z \left(- 9 x y z + 6 x y + 3 x z - 2 x + 9 y z - 6 y - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 5 of the reference element.
$$\displaystyle l_{48}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{2}\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1},s_{2})$$ is a parametrisation of $$R(3)$$.

$$\displaystyle \boldsymbol{\phi}_{48} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 72 x y \left(- 3 x y z + 2 x y + 3 x z - 2 x + 3 y z - 2 y - 3 z + 2\right)\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{49}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{1} - 1\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1},s_{2})$$ is a parametrisation of $$R(3)$$.

$$\displaystyle \boldsymbol{\phi}_{49} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 72 x z \left(3 x y z - 3 x y - 2 x z + 2 x - 3 y z + 3 y + 2 z - 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{50}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}1 - s_{0}\\0\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1},s_{2})$$ is a parametrisation of $$R(3)$$.

$$\displaystyle \boldsymbol{\phi}_{50} = \left(\begin{array}{c}\displaystyle 72 y z \left(- 3 x y z + 3 x y + 3 x z - 3 x + 2 y z - 2 y - 2 z + 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{51}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0}\\0\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1},s_{2})$$ is a parametrisation of $$R(3)$$.

$$\displaystyle \boldsymbol{\phi}_{51} = \left(\begin{array}{c}\displaystyle 72 y z \left(3 x y z - 3 x y - 3 x z + 3 x - y z + y + z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{52}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\- s_{1}\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1},s_{2})$$ is a parametrisation of $$R(3)$$.

$$\displaystyle \boldsymbol{\phi}_{52} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 72 x z \left(- 3 x y z + 3 x y + x z - x + 3 y z - 3 y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{53}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{2}\end{array}\right)$$
where $$R$$ is the reference element;
and $$(s_{0},s_{1},s_{2})$$ is a parametrisation of $$R(3)$$.

$$\displaystyle \boldsymbol{\phi}_{53} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 72 x y \left(3 x y z - x y - 3 x z + x - 3 y z + y + 3 z - 1\right)\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
• $$R$$ is the reference prism. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle - x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z\\\displaystyle - x z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{8}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
and $$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle y z - y - z + 1\\\displaystyle x \left(1 - z\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
and $$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle y \left(1 - z\right)\\\displaystyle x z - x - z + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
and $$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - x - y + 1\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
and $$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle y \left(z - 1\right)\\\displaystyle x \left(1 - z\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
and $$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
and $$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{6}$$
where $$e_{6}$$ is the 6th edge;
and $$\hat{\boldsymbol{t}}_{6}$$ is the tangent to edge 6.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle z \left(1 - y\right)\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 6 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{7}$$
where $$e_{7}$$ is the 7th edge;
and $$\hat{\boldsymbol{t}}_{7}$$ is the tangent to edge 7.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle y z\\\displaystyle z \left(1 - x\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 7 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{8}$$
where $$e_{8}$$ is the 8th edge;
and $$\hat{\boldsymbol{t}}_{8}$$ is the tangent to edge 8.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle - y z\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 8 of the reference element.
• $$R$$ is the reference prism. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle - x^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y z\\\displaystyle - x^{2} z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y z^{2}\\\displaystyle - x^{2} z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle - x y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2} z\\\displaystyle - x y z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y^{2} z^{2}\\\displaystyle - x y z^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2} z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y^{2} z\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{35}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 24 x y z^{2} - 32 x y z + 8 x y - 18 x z^{2} + 24 x z - 6 x + 24 y^{2} z^{2} - 32 y^{2} z + 8 y^{2} - 36 y z^{2} + 48 y z - 12 y + 12 z^{2} - 16 z + 4\\\displaystyle 2 x \left(- 12 x z^{2} + 16 x z - 4 x - 12 y z^{2} + 16 y z - 4 y + 9 z^{2} - 12 z + 3\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{t}}_{0}$$ is the tangent to edge 0;
and $$s_{0}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - 24 x y z^{2} + 32 x y z - 8 x y + 18 x z^{2} - 24 x z + 6 x + 6 y z^{2} - 8 y z + 2 y - 6 z^{2} + 8 z - 2\\\displaystyle 4 x \left(6 x z^{2} - 8 x z + 2 x - 3 z^{2} + 4 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 2 y \left(- 12 x z^{2} + 16 x z - 4 x - 12 y z^{2} + 16 y z - 4 y + 9 z^{2} - 12 z + 3\right)\\\displaystyle 24 x^{2} z^{2} - 32 x^{2} z + 8 x^{2} + 24 x y z^{2} - 32 x y z + 8 x y - 36 x z^{2} + 48 x z - 12 x - 18 y z^{2} + 24 y z - 6 y + 12 z^{2} - 16 z + 4\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{t}}_{1}$$ is the tangent to edge 1;
and $$s_{0}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 4 y \left(6 y z^{2} - 8 y z + 2 y - 3 z^{2} + 4 z - 1\right)\\\displaystyle - 24 x y z^{2} + 32 x y z - 8 x y + 6 x z^{2} - 8 x z + 2 x + 18 y z^{2} - 24 y z + 6 y - 6 z^{2} + 8 z - 2\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 18 x^{2} z + 12 x^{2} - 36 x y z + 24 x y + 24 x z - 16 x - 18 y^{2} z + 12 y^{2} + 24 y z - 16 y - 6 z + 4\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{t}}_{2}$$ is the tangent to edge 2;
and $$s_{0}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 18 x^{2} z - 6 x^{2} + 36 x y z - 12 x y - 24 x z + 8 x + 18 y^{2} z - 6 y^{2} - 24 y z + 8 y + 6 z - 2\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
$$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 2 y \left(- 12 x z^{2} + 16 x z - 4 x + 3 z^{2} - 4 z + 1\right)\\\displaystyle 4 x \left(6 x z^{2} - 8 x z + 2 x - 3 z^{2} + 4 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}$$
where $$e_{3}$$ is the 3th edge;
$$\hat{\boldsymbol{t}}_{3}$$ is the tangent to edge 3;
and $$s_{0}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 4 y \left(- 6 y z^{2} + 8 y z - 2 y + 3 z^{2} - 4 z + 1\right)\\\displaystyle 2 x \left(12 y z^{2} - 16 y z + 4 y - 3 z^{2} + 4 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 3 of the reference element.
$$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
$$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4;
and $$s_{0}$$ is a parametrisation of $$e_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x \left(- 9 x z + 6 x + 6 z - 4\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{4}$$
where $$e_{4}$$ is the 4th edge;
$$\hat{\boldsymbol{t}}_{4}$$ is the tangent to edge 4;
and $$s_{0}$$ is a parametrisation of $$e_{4}$$.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 x \left(9 x z - 3 x - 6 z + 2\right)\end{array}\right)$$

This DOF is associated with edge 4 of the reference element.
$$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
$$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5;
and $$s_{0}$$ is a parametrisation of $$e_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 y \left(- 9 y z + 6 y + 6 z - 4\right)\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{5}$$
where $$e_{5}$$ is the 5th edge;
$$\hat{\boldsymbol{t}}_{5}$$ is the tangent to edge 5;
and $$s_{0}$$ is a parametrisation of $$e_{5}$$.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 2 y \left(9 y z - 3 y - 6 z + 2\right)\end{array}\right)$$

This DOF is associated with edge 5 of the reference element.
$$\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{6}$$
where $$e_{6}$$ is the 6th edge;
$$\hat{\boldsymbol{t}}_{6}$$ is the tangent to edge 6;
and $$s_{0}$$ is a parametrisation of $$e_{6}$$.

$$\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 2 z \left(12 x y z - 8 x y - 9 x z + 6 x + 12 y^{2} z - 8 y^{2} - 18 y z + 12 y + 6 z - 4\right)\\\displaystyle 2 x z \left(- 12 x z + 8 x - 12 y z + 8 y + 9 z - 6\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 6 of the reference element.
$$\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{6}$$
where $$e_{6}$$ is the 6th edge;
$$\hat{\boldsymbol{t}}_{6}$$ is the tangent to edge 6;
and $$s_{0}$$ is a parametrisation of $$e_{6}$$.

$$\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 2 z \left(- 12 x y z + 8 x y + 9 x z - 6 x + 3 y z - 2 y - 3 z + 2\right)\\\displaystyle 4 x z \left(6 x z - 4 x - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 6 of the reference element.
$$\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{7}$$
where $$e_{7}$$ is the 7th edge;
$$\hat{\boldsymbol{t}}_{7}$$ is the tangent to edge 7;
and $$s_{0}$$ is a parametrisation of $$e_{7}$$.

$$\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 2 y z \left(- 12 x z + 8 x - 12 y z + 8 y + 9 z - 6\right)\\\displaystyle 2 z \left(12 x^{2} z - 8 x^{2} + 12 x y z - 8 x y - 18 x z + 12 x - 9 y z + 6 y + 6 z - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 7 of the reference element.
$$\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{7}$$
where $$e_{7}$$ is the 7th edge;
$$\hat{\boldsymbol{t}}_{7}$$ is the tangent to edge 7;
and $$s_{0}$$ is a parametrisation of $$e_{7}$$.

$$\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 4 y z \left(6 y z - 4 y - 3 z + 2\right)\\\displaystyle 2 z \left(- 12 x y z + 8 x y + 3 x z - 2 x + 9 y z - 6 y - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 7 of the reference element.
$$\displaystyle l_{16}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{8}$$
where $$e_{8}$$ is the 8th edge;
$$\hat{\boldsymbol{t}}_{8}$$ is the tangent to edge 8;
and $$s_{0}$$ is a parametrisation of $$e_{8}$$.

$$\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 2 y z \left(- 12 x z + 8 x + 3 z - 2\right)\\\displaystyle 4 x z \left(6 x z - 4 x - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 8 of the reference element.
$$\displaystyle l_{17}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{8}$$
where $$e_{8}$$ is the 8th edge;
$$\hat{\boldsymbol{t}}_{8}$$ is the tangent to edge 8;
and $$s_{0}$$ is a parametrisation of $$e_{8}$$.

$$\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 4 y z \left(- 6 y z + 4 y + 3 z - 2\right)\\\displaystyle 2 x z \left(12 y z - 8 y - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 8 of the reference element.
$$\displaystyle l_{18}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face.

$$\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 8 y \left(- 3 x z^{2} + 4 x z - x - 6 y z^{2} + 8 y z - 2 y + 6 z^{2} - 8 z + 2\right)\\\displaystyle 8 x \left(3 x z^{2} - 4 x z + x + 6 y z^{2} - 8 y z + 2 y - 3 z^{2} + 4 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{19}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$
where $$f_{0}$$ is the 0th face.

$$\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 8 y \left(6 x z^{2} - 8 x z + 2 x + 3 y z^{2} - 4 y z + y - 3 z^{2} + 4 z - 1\right)\\\displaystyle 8 x \left(- 6 x z^{2} + 8 x z - 2 x - 3 y z^{2} + 4 y z - y + 6 z^{2} - 8 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{20}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{1}\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x \left(3 x z - 2 x + 3 y z - 2 y - 3 z + 2\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{21}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{0} - 1\\0\\0\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle 12 z \left(4 x y z - 4 x y - 3 x z + 3 x + 4 y^{2} z - 4 y^{2} - 6 y z + 6 y + 2 z - 2\right)\\\displaystyle 12 x z \left(- 4 x z + 4 x - 4 y z + 4 y + 3 z - 3\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{22}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}- s_{0}\\0\\0\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle 12 z \left(- 4 x y z + 4 x y + 3 x z - 3 x + y z - y - z + 1\right)\\\displaystyle 24 x z \left(2 x z - 2 x - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{23}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1}\end{array}\right)$$
where $$f_{1}$$ is the 1st face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x \left(- 3 x z + x - 3 y z + y + 3 z - 1\right)\end{array}\right)$$

This DOF is associated with face 1 of the reference element.
$$\displaystyle l_{24}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1 - s_{1}\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 y \left(3 x z - 2 x + 3 y z - 2 y - 3 z + 2\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{25}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0} - 1\\0\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle 12 y z \left(- 4 x z + 4 x - 4 y z + 4 y + 3 z - 3\right)\\\displaystyle 12 z \left(4 x^{2} z - 4 x^{2} + 4 x y z - 4 x y - 6 x z + 6 x - 3 y z + 3 y + 2 z - 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{26}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\- s_{0}\\0\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle 24 y z \left(2 y z - 2 y - z + 1\right)\\\displaystyle 12 z \left(- 4 x y z + 4 x y + x z - x + 3 y z - 3 y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{27}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\s_{1}\end{array}\right)$$
where $$f_{2}$$ is the 2nd face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 y \left(- 3 x z + x - 3 y z + y + 3 z - 1\right)\end{array}\right)$$

This DOF is associated with face 2 of the reference element.
$$\displaystyle l_{28}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\\frac{\sqrt{2} \cdot \left(1 - s_{1}\right)}{2}\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x y \left(2 - 3 z\right)\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{29}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}\frac{\sqrt{2} \cdot \left(1 - s_{0}\right)}{2}\\\frac{\sqrt{2} \left(s_{0} - 1\right)}{2}\\0\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle 12 y z \left(- 4 x z + 4 x + z - 1\right)\\\displaystyle 24 x z \left(2 x z - 2 x - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{30}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}\frac{\sqrt{2} s_{0}}{2}\\- \frac{\sqrt{2} s_{0}}{2}\\0\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{30} = \left(\begin{array}{c}\displaystyle 24 y z \left(- 2 y z + 2 y + z - 1\right)\\\displaystyle 12 x z \left(4 y z - 4 y - z + 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{31}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\\frac{\sqrt{2} s_{1}}{2}\end{array}\right)$$
where $$f_{3}$$ is the 3th face;
and $$(s_{0},s_{1})$$ is a parametrisation of $$f_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{31} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 12 x y \left(3 z - 1\right)\end{array}\right)$$

This DOF is associated with face 3 of the reference element.
$$\displaystyle l_{32}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$
where $$f_{4}$$ is the 4th face.

$$\displaystyle \boldsymbol{\phi}_{32} = \left(\begin{array}{c}\displaystyle 8 y z \left(- 3 x z + 2 x - 6 y z + 4 y + 6 z - 4\right)\\\displaystyle 8 x z \left(3 x z - 2 x + 6 y z - 4 y - 3 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 4 of the reference element.
$$\displaystyle l_{33}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)$$
where $$f_{4}$$ is the 4th face.

$$\displaystyle \boldsymbol{\phi}_{33} = \left(\begin{array}{c}\displaystyle 8 y z \left(6 x z - 4 x + 3 y z - 2 y - 3 z + 2\right)\\\displaystyle 8 x z \left(- 6 x z + 4 x - 3 y z + 2 y + 6 z - 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 4 of the reference element.
$$\displaystyle l_{34}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{34} = \left(\begin{array}{c}\displaystyle 48 y z \left(x z - x + 2 y z - 2 y - 2 z + 2\right)\\\displaystyle 48 x z \left(- x z + x - 2 y z + 2 y + z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.
$$\displaystyle l_{35}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}$$
where $$R$$ is the reference element.

$$\displaystyle \boldsymbol{\phi}_{35} = \left(\begin{array}{c}\displaystyle 48 y z \left(- 2 x z + 2 x - y z + y + z - 1\right)\\\displaystyle 48 x z \left(2 x z - 2 x + y z - y - 2 z + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with volume 0 of the reference element.

## DefElement stats

 Element added 28 December 2020 Element last updated 10 February 2022