an encyclopedia of finite element definitions

# Bernardi–Raugel

Click here to read what the information on this page means.

 Abbreviated names BR Orders $$k=1$$ Reference elements triangle, tetrahedron Polynomial set $$\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(7)}_{k}$$ (triangle) $$\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(8)}_{k}$$ (tetrahedron) ↓ Show polynomial set definitions ↓ DOFs On each vertex: point evaluations in $d$ directions On each facet: normal integral moments with an order $$k-1$$ Lagrange space Number of DOFs triangle: $$9$$tetrahedron: $$16$$ Categories Vector-valued elements, H(div) conforming elements

## Implementations

 Symfem string "Bernardi-Raugel"↓ Show Symfem examples ↓

## Examples

triangle
order 1
tetrahedron
order 1
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle - \frac{\sqrt{2} x y}{2}\\\displaystyle - \frac{\sqrt{2} x y}{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y \left(x + y - 1\right)\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(- x - y + 1\right)\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{8}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}-1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 3 x y + x - 3 y^{2} + 4 y - 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 x^{2} + 3 x y - 4 x - y + 1\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}-1\\-1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle \frac{x \left(3 y - 2\right)}{2}\\\displaystyle \frac{3 x y}{2}\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle - x\\\displaystyle x \left(3 x + 3 y - 2\right)\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}-1\\-1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle \frac{3 x y}{2}\\\displaystyle \frac{y \left(3 x - 2\right)}{2}\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}-1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle y \left(- 3 x - 3 y + 2\right)\\\displaystyle y\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{0}$$

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle - 3 x y\\\displaystyle - 3 x y\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{1}$$

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 6 y \left(x + y - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{2}$$

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 x \left(- x - y + 1\right)\end{array}\right)$$

This DOF is associated with edge 2 of the reference element.
• $$R$$ is the reference tetrahedron. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle \frac{\sqrt{3} x y z}{3}\\\displaystyle \frac{\sqrt{3} x y z}{3}\\\displaystyle \frac{\sqrt{3} x y z}{3}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y z \left(- x - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z \left(x + y + z - 1\right)\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y \left(- x - y - z + 1\right)\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{15}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 20 x y z - x + 20 y^{2} z + 20 y z^{2} - 20 y z - y - z + 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 20 x^{2} z - 20 x y z - 20 x z^{2} + 20 x z + x + y + z - 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 20 x^{2} y + 20 x y^{2} + 20 x y z - 20 x y - x - y - z + 1\end{array}\right)$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle \frac{x \left(- 20 y z + 3\right)}{3}\\\displaystyle - \frac{20 x y z}{3}\\\displaystyle - \frac{20 x y z}{3}\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle x\\\displaystyle x \left(- 20 x z - 20 y z - 20 z^{2} + 20 z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle - x\\\displaystyle 0\\\displaystyle x \left(20 x y + 20 y^{2} + 20 y z - 20 y + 1\right)\end{array}\right)$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle - \frac{20 x y z}{3}\\\displaystyle \frac{y \left(- 20 x z + 3\right)}{3}\\\displaystyle - \frac{20 x y z}{3}\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle y \left(20 x z + 20 y z + 20 z^{2} - 20 z + 1\right)\\\displaystyle - y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - y\\\displaystyle y \left(20 x^{2} + 20 x y + 20 x z - 20 x + 1\right)\end{array}\right)$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle - \frac{20 x y z}{3}\\\displaystyle - \frac{20 x y z}{3}\\\displaystyle \frac{z \left(- 20 x y + 3\right)}{3}\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle z \left(20 x y + 20 y^{2} + 20 y z - 20 y + 1\right)\\\displaystyle 0\\\displaystyle - z\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z \left(- 20 x^{2} - 20 x y - 20 x z + 20 x - 1\right)\\\displaystyle z\end{array}\right)$$

This DOF is associated with vertex 3 of the reference element. $$\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{0}$$

$$\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 40 x y z\\\displaystyle 40 x y z\\\displaystyle 40 x y z\end{array}\right)$$

This DOF is associated with face 0 of the reference element. $$\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{1}$$

$$\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 120 y z \left(- x - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 1 of the reference element. $$\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{2}$$

$$\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 120 x z \left(x + y + z - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 2 of the reference element. $$\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{3}$$

$$\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 120 x y \left(- x - y - z + 1\right)\end{array}\right)$$

This DOF is associated with face 3 of the reference element.