an encyclopedia of finite element definitions

Degree 2 Bernardi–Raugel on a tetrahedron

◀ Back to Bernardi–Raugel definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle x \left(- 126 x y z + 2 x - 126 y^{2} z - 126 y z^{2} + 126 y z - 1\right)\\\displaystyle 42 x y z \left(x + y + z - 1\right)\\\displaystyle 42 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 42 x y z \left(x + y + z - 1\right)\\\displaystyle y \left(- 126 x^{2} z - 126 x y z - 126 x z^{2} + 126 x z + 2 y - 1\right)\\\displaystyle 42 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 42 x y z \left(x + y + z - 1\right)\\\displaystyle 42 x y z \left(x + y + z - 1\right)\\\displaystyle z \left(- 126 x^{2} y - 126 x y^{2} - 126 x y z + 126 x y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle - 42 x^{2} y z + 2 x^{2} - 42 x y^{2} z - 42 x y z^{2} + 42 x y z + 4 x y + 4 x z - 3 x + 2 y^{2} + 4 y z - 3 y + 2 z^{2} - 3 z + 1\\\displaystyle 42 x y z \left(- x - y - z + 1\right)\\\displaystyle 42 x y z \left(- x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y \left(- 42 x^{2} z - 42 x y z - 42 x z^{2} + 42 x z + 2 y - 1\right)\\\displaystyle y \left(126 x^{2} z + 126 x y z + 126 x z^{2} - 126 x z - 2 y + 1\right)\\\displaystyle 42 x y z \left(- x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle z \left(- 42 x^{2} y - 42 x y^{2} - 42 x y z + 42 x y + 2 z - 1\right)\\\displaystyle 42 x y z \left(- x - y - z + 1\right)\\\displaystyle z \left(126 x^{2} y + 126 x y^{2} + 126 x y z - 126 x y - 2 z + 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 42 x y z \left(x + y + z - 1\right)\\\displaystyle 42 x^{2} y z - 2 x^{2} + 42 x y^{2} z + 42 x y z^{2} - 42 x y z - 4 x y - 4 x z + 3 x - 2 y^{2} - 4 y z + 3 y - 2 z^{2} + 3 z - 1\\\displaystyle 42 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle x \left(- 126 x y z + 2 x - 126 y^{2} z - 126 y z^{2} + 126 y z - 1\right)\\\displaystyle x \left(42 x y z - 2 x + 42 y^{2} z + 42 y z^{2} - 42 y z + 1\right)\\\displaystyle 42 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,1)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 42 x y z \left(x + y + z - 1\right)\\\displaystyle z \left(42 x^{2} y + 42 x y^{2} + 42 x y z - 42 x y - 2 z + 1\right)\\\displaystyle z \left(- 126 x^{2} y - 126 x y^{2} - 126 x y z + 126 x y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 42 x y z \left(- x - y - z + 1\right)\\\displaystyle 42 x y z \left(- x - y - z + 1\right)\\\displaystyle - 42 x^{2} y z + 2 x^{2} - 42 x y^{2} z - 42 x y z^{2} + 42 x y z + 4 x y + 4 x z - 3 x + 2 y^{2} + 4 y z - 3 y + 2 z^{2} - 3 z + 1\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle x \left(126 x y z - 2 x + 126 y^{2} z + 126 y z^{2} - 126 y z + 1\right)\\\displaystyle 42 x y z \left(- x - y - z + 1\right)\\\displaystyle x \left(- 42 x y z + 2 x - 42 y^{2} z - 42 y z^{2} + 42 y z - 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 42 x y z \left(- x - y - z + 1\right)\\\displaystyle y \left(126 x^{2} z + 126 x y z + 126 x z^{2} - 126 x z - 2 y + 1\right)\\\displaystyle y \left(- 42 x^{2} z - 42 x y z - 42 x z^{2} + 42 x z + 2 y - 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{0}\)
where \(f_{0}\) is the 0th face;
and \(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0.

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 40 x y z \left(- 35 x - 35 y - 35 z + 36\right)\\\displaystyle 40 x y z \left(- 35 x - 35 y - 35 z + 36\right)\\\displaystyle 40 x y z \left(- 35 x - 35 y - 35 z + 36\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{1}\)
where \(f_{1}\) is the 1st face;
and \(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1.

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 120 y z \left(7 x^{2} + 7 x y + 7 x z - 8 x - y - z + 1\right)\\\displaystyle 1680 x y z \left(x + y + z - 1\right)\\\displaystyle 1680 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{2}\)
where \(f_{2}\) is the 2nd face;
and \(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2.

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 1680 x y z \left(- x - y - z + 1\right)\\\displaystyle 120 x z \left(- 7 x y + x - 7 y^{2} - 7 y z + 8 y + z - 1\right)\\\displaystyle 1680 x y z \left(- x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{3}\)
where \(f_{3}\) is the 3rd face;
and \(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3.

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 1680 x y z \left(x + y + z - 1\right)\\\displaystyle 1680 x y z \left(x + y + z - 1\right)\\\displaystyle 120 x y \left(7 x z - x + 7 y z - y + 7 z^{2} - 8 z + 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{16}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\-1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 y z \left(- 42 x^{2} - 42 x y - 42 x z + 42 x - 1\right)\\\displaystyle 2 y z \left(42 x^{2} + 42 x y + 42 x z - 42 x + 1\right)\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{17}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,\tfrac{1}{2})\cdot\left(\begin{array}{c}-1\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 2 x z \left(- 42 x y - 42 y^{2} - 42 y z + 42 y - 1\right)\\\displaystyle 0\\\displaystyle 2 x z \left(42 x y + 42 y^{2} + 42 y z - 42 y + 1\right)\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{18}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2},0)\cdot\left(\begin{array}{c}-1\\1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 2 x y \left(- 42 x z - 42 y z - 42 z^{2} + 42 z - 1\right)\\\displaystyle 2 x y \left(42 x z + 42 y z + 42 z^{2} - 42 z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{19}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 4 z \left(42 x^{2} y + 42 x y^{2} + 42 x y z - 42 x y - x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{20}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y \left(42 x^{2} z + 42 x y z + 42 x z^{2} - 42 x z - x - y - z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{21}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle 4 x \left(42 x y z - x + 42 y^{2} z + 42 y z^{2} - 42 y z - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{22}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle \frac{4 x y z \left(49 x + 49 y + 49 z - 54\right)}{3}\\\displaystyle \frac{2 y z \left(- 28 x^{2} - 28 x y - 28 x z + 18 x + 3\right)}{3}\\\displaystyle \frac{2 y z \left(- 28 x^{2} - 28 x y - 28 x z + 18 x + 3\right)}{3}\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{23}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle \frac{2 x z \left(- 28 x y - 28 y^{2} - 28 y z + 18 y + 3\right)}{3}\\\displaystyle \frac{4 x y z \left(49 x + 49 y + 49 z - 54\right)}{3}\\\displaystyle \frac{2 x z \left(- 28 x y - 28 y^{2} - 28 y z + 18 y + 3\right)}{3}\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{24}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2},0)\cdot\left(\begin{array}{c}1\\1\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle \frac{2 x y \left(- 28 x z - 28 y z - 28 z^{2} + 18 z + 3\right)}{3}\\\displaystyle \frac{2 x y \left(- 28 x z - 28 y z - 28 z^{2} + 18 z + 3\right)}{3}\\\displaystyle \frac{4 x y z \left(49 x + 49 y + 49 z - 54\right)}{3}\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{25}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle 4 y z \left(7 x^{2} + 7 x y + 7 x z - 2 x + 5 y + 5 z - 4\right)\\\displaystyle 2 y z \left(- 14 x^{2} - 14 x y - 14 x z + 14 x - 1\right)\\\displaystyle 2 y z \left(- 14 x^{2} - 14 x y - 14 x z + 14 x - 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{26}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,\tfrac{1}{2})\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle 4 z \left(7 x^{2} y + 7 x y^{2} + 7 x y z - 2 x y - x + 5 y^{2} + 5 y z - 6 y - z + 1\right)\\\displaystyle 112 x y z \left(- x - y - z + 1\right)\\\displaystyle 56 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{27}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},0)\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle 4 y \left(7 x^{2} z + 7 x y z + 7 x z^{2} - 2 x z - x + 5 y z - y + 5 z^{2} - 6 z + 1\right)\\\displaystyle 56 x y z \left(x + y + z - 1\right)\\\displaystyle 112 x y z \left(- x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{28}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 2 x z \left(14 x y + 14 y^{2} + 14 y z - 14 y + 1\right)\\\displaystyle 4 x z \left(- 7 x y - 5 x - 7 y^{2} - 7 y z + 2 y - 5 z + 4\right)\\\displaystyle 2 x z \left(14 x y + 14 y^{2} + 14 y z - 14 y + 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{29}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0,\tfrac{1}{2})\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle 112 x y z \left(x + y + z - 1\right)\\\displaystyle 4 z \left(- 7 x^{2} y - 5 x^{2} - 7 x y^{2} - 7 x y z + 2 x y - 5 x z + 6 x + y + z - 1\right)\\\displaystyle 56 x y z \left(- x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{30}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,0)\cdot\left(\begin{array}{c}0\\-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{30} = \left(\begin{array}{c}\displaystyle 56 x y z \left(- x - y - z + 1\right)\\\displaystyle 4 x \left(- 7 x y z - 5 x z + x - 7 y^{2} z - 7 y z^{2} + 2 y z + y - 5 z^{2} + 6 z - 1\right)\\\displaystyle 112 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{31}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{31} = \left(\begin{array}{c}\displaystyle 2 x y \left(- 14 x z - 14 y z - 14 z^{2} + 14 z - 1\right)\\\displaystyle 2 x y \left(- 14 x z - 14 y z - 14 z^{2} + 14 z - 1\right)\\\displaystyle 4 x y \left(7 x z + 5 x + 7 y z + 5 y + 7 z^{2} - 2 z - 4\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{32}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2},0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{32} = \left(\begin{array}{c}\displaystyle 112 x y z \left(- x - y - z + 1\right)\\\displaystyle 56 x y z \left(x + y + z - 1\right)\\\displaystyle 4 y \left(7 x^{2} z + 5 x^{2} + 7 x y z + 5 x y + 7 x z^{2} - 2 x z - 6 x - y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{33}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0,0)\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{33} = \left(\begin{array}{c}\displaystyle 56 x y z \left(x + y + z - 1\right)\\\displaystyle 112 x y z \left(- x - y - z + 1\right)\\\displaystyle 4 x \left(7 x y z + 5 x y - x + 7 y^{2} z + 5 y^{2} + 7 y z^{2} - 2 y z - 6 y - z + 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{34}:\boldsymbol{v}\mapsto\displaystyle\int_{R}(s_{0})\nabla\cdot\boldsymbol{v}\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{34} = \left(\begin{array}{c}\displaystyle 5040 x y z \left(x + y + z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{35}:\boldsymbol{v}\mapsto\displaystyle\int_{R}(s_{1})\nabla\cdot\boldsymbol{v}\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{35} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 5040 x y z \left(x + y + z - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.
\(\displaystyle l_{36}:\boldsymbol{v}\mapsto\displaystyle\int_{R}(s_{2})\nabla\cdot\boldsymbol{v}\)
where \(R\) is the reference element;
and \(s_{0},s_{1},s_{2}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{36} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 5040 x y z \left(x + y + z - 1\right)\end{array}\right)\)

This DOF is associated with volume 0 of the reference element.