an encyclopedia of finite element definitions

Trimmed serendipity H(curl)

Click here to read what the information on this page means.

Exterior calculus names\(\mathcal{S}^-_{k}\Lambda^{1}(\square_d)\)
Cockburn–fu names\(\left[S_{2,k}^\square\right]_{1}\)
Orders\(1\leqslant k\)
Reference elementsquadrilateral, hexahedron
Polynomial set\(\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(33)}_{k} \oplus \mathcal{Z}^{(34)}_{k}\) (quadrilateral)
\(\mathcal{P}_{k-1}^d \oplus \mathcal{Z}^{(35)}_{k} \oplus \mathcal{Z}^{(36)}_{k} \oplus \mathcal{Z}^{(37)}_{k} \oplus \mathcal{Z}^{(38)}_{k} \oplus \mathcal{Z}^{(39)}_{k}\) (hexahedron)
↓ Show polynomial set definitions ↓
DOFsOn each edge: tangential integral moments with an order \(k-1\) dPc space
On each face: integral moments with an order \(k-3\) vector dPc space, and integral moments with \(\left\{\nabla(p)\middle|p\text{ is an order \(k-1\) monomial}\right\}\)
CategoriesVector-valued elements, H(curl) conforming elements

Implementations

Symfem"TScurl"
↓ Show Symfem examples ↓

Examples

quadrilateral
order 1
quadrilateral
order 2
quadrilateral
order 3
hexahedron
order 1
hexahedron
order 2
hexahedron
order 3
  • \(R\) is the reference quadrilateral. The following numbering of the subentities of the reference is used:
  • \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle - x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle x\end{array}\right)\)
  • \(\mathcal{L}=\{l_0,...,l_{3}\}\)
  • Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 1 - y\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 1 - x\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
and \(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3.

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
  • \(R\) is the reference quadrilateral. The following numbering of the subentities of the reference is used:
  • \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle - x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y\\\displaystyle - x^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 2 x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 2 x y\\\displaystyle x^{2}\end{array}\right)\)
  • \(\mathcal{L}=\{l_0,...,l_{9}\}\)
  • Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 6 x y - 6 x + 3 y^{2} - 7 y + 4\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - 6 x y + 6 x + 3 y^{2} - y - 2\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 x^{2} + 6 x y - 7 x - 6 y + 4\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 x^{2} - 6 x y - x + 6 y - 2\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(3 x - 6 y + 1\right)\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(3 x + 6 y - 5\right)\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle y \left(- 6 x + 3 y + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle y \left(6 x + 3 y - 5\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{8}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle 0\\\displaystyle -1\end{array}\right)\cdot\mathbf{v}\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 x \left(x - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{9}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 6 y \left(1 - y\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
  • \(R\) is the reference quadrilateral. The following numbering of the subentities of the reference is used:
  • \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{3}\\\displaystyle - x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y^{2}\\\displaystyle - x^{2} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2} y\\\displaystyle - x^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{3}\\\displaystyle 3 x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 3 x^{2} y\\\displaystyle x^{3}\end{array}\right)\)
  • \(\mathcal{L}=\{l_0,...,l_{16}\}\)
  • Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 30 x^{2} y + 30 x^{2} - 9 x y^{2} + 45 x y - 36 x - 10 y^{3} + \frac{45 y^{2}}{2} - \frac{43 y}{2} + 9\\\displaystyle \frac{9 x \left(2 x y - x - 2 y + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 15 x^{2} y - 15 x^{2} - 15 x y + 15 x - 10 y^{3} + 18 y^{2} - \frac{13 y}{2} - \frac{3}{2}\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle - 30 x^{2} y + 30 x^{2} + 9 x y^{2} + 15 x y - 24 x - 10 y^{3} + \frac{27 y^{2}}{2} - \frac{13 y}{2} + 3\\\displaystyle \frac{9 x \left(- 2 x y + x + 2 y - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(2 x y - 2 x - y + 1\right)}{2}\\\displaystyle - 10 x^{3} - 9 x^{2} y + \frac{45 x^{2}}{2} - 30 x y^{2} + 45 x y - \frac{43 x}{2} + 30 y^{2} - 36 y + 9\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 10 x^{3} + 18 x^{2} + 15 x y^{2} - 15 x y - \frac{13 x}{2} - 15 y^{2} + 15 y - \frac{3}{2}\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(- 2 x y + 2 x + y - 1\right)}{2}\\\displaystyle - 10 x^{3} + 9 x^{2} y + \frac{27 x^{2}}{2} - 30 x y^{2} + 15 x y - \frac{13 x}{2} + 30 y^{2} - 24 y + 3\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(2 x y - 2 x - y + 1\right)}{2}\\\displaystyle \frac{x \left(20 x^{2} - 18 x y - 15 x + 60 y^{2} - 54 y + 13\right)}{2}\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \frac{x \left(20 x^{2} - 24 x - 30 y^{2} + 30 y + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(- 2 x y + 2 x + y - 1\right)}{2}\\\displaystyle \frac{x \left(20 x^{2} + 18 x y - 33 x + 60 y^{2} - 66 y + 19\right)}{2}\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle \frac{y \left(60 x^{2} - 18 x y - 54 x + 20 y^{2} - 15 y + 13\right)}{2}\\\displaystyle \frac{9 x \left(2 x y - x - 2 y + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle \frac{y \left(- 30 x^{2} + 30 x + 20 y^{2} - 24 y + 1\right)}{2}\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle \frac{y \left(60 x^{2} + 18 x y - 66 x + 20 y^{2} - 33 y + 19\right)}{2}\\\displaystyle \frac{9 x \left(- 2 x y + x + 2 y - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 3 y \left(6 x y - 6 x + 20 y^{2} - 35 y + 15\right)\\\displaystyle 9 x \left(- 2 x y + x + 2 y - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 9 y \left(- 2 x y + 2 x + y - 1\right)\\\displaystyle 3 x \left(20 x^{2} + 6 x y - 35 x - 6 y + 15\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{14}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle 0\\\displaystyle - 2 s_{0}\end{array}\right)\cdot\mathbf{v}\)
where \(R\) is the reference element;
and \((s_{0},s_{1})\) is a parametrisation of \(R(2)\).

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 30 x \left(2 x^{2} - 3 x + 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{15}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle s_{0}\\\displaystyle - s_{1}\end{array}\right)\cdot\mathbf{v}\)
where \(R\) is the reference element;
and \((s_{0},s_{1})\) is a parametrisation of \(R(2)\).

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 18 y \left(- 2 x y + 2 x + y - 1\right)\\\displaystyle 18 x \left(2 x y - x - 2 y + 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{16}:\mathbf{v}\mapsto\displaystyle\int_{R}\left(\begin{array}{c}\displaystyle 2 s_{1}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(R\) is the reference element;
and \((s_{0},s_{1})\) is a parametrisation of \(R(2)\).

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 30 y \left(- 2 y^{2} + 3 y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
  • \(R\) is the reference hexahedron. The following numbering of the subentities of the reference is used:
  • \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle - y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - z\\\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle - x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z\\\displaystyle x z\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle - x z\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y z\\\displaystyle 0\\\displaystyle x y\end{array}\right)\)
  • \(\mathcal{L}=\{l_0,...,l_{11}\}\)
  • Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle y z - y - z + 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x z - x - z + 1\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y - x - y + 1\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
and \(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3.

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(1 - z\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
and \(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4.

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x \left(1 - y\right)\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
and \(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5.

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle y \left(1 - z\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{6}\)
where \(e_{6}\) is the 6th edge;
and \(\hat{\boldsymbol{t}}_{6}\) is the tangent to edge 6.

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y \left(1 - x\right)\end{array}\right)\)

This DOF is associated with edge 6 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{7}\)
where \(e_{7}\) is the 7th edge;
and \(\hat{\boldsymbol{t}}_{7}\) is the tangent to edge 7.

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)\)

This DOF is associated with edge 7 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{8}\)
where \(e_{8}\) is the 8th edge;
and \(\hat{\boldsymbol{t}}_{8}\) is the tangent to edge 8.

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle z \left(1 - y\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 8 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{9}\)
where \(e_{9}\) is the 9th edge;
and \(\hat{\boldsymbol{t}}_{9}\) is the tangent to edge 9.

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z \left(1 - x\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 9 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{10}\)
where \(e_{10}\) is the 10th edge;
and \(\hat{\boldsymbol{t}}_{10}\) is the tangent to edge 10.

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 10 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot\hat{\boldsymbol{t}}_{11}\)
where \(e_{11}\) is the 11th edge;
and \(\hat{\boldsymbol{t}}_{11}\) is the tangent to edge 11.

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 11 of the reference element.
  • \(R\) is the reference hexahedron. The following numbering of the subentities of the reference is used:
  • \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle - y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - z^{2}\\\displaystyle 0\\\displaystyle x z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z\\\displaystyle - x z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z\\\displaystyle - y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y z\\\displaystyle 0\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle - x y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x z\\\displaystyle 0\\\displaystyle x^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y\\\displaystyle - x^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z^{2}\\\displaystyle x z^{2}\\\displaystyle 2 x y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2} z\\\displaystyle 2 x y z\\\displaystyle x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 2 x y z\\\displaystyle x^{2} z\\\displaystyle x^{2} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z^{2}\\\displaystyle 0\\\displaystyle 2 x z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z\\\displaystyle x z\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 2 x y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle 2 y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 2 x y\\\displaystyle x^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 y z\\\displaystyle y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 2 x z\\\displaystyle 0\\\displaystyle x^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle - x z^{2}\\\displaystyle x y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y z^{2}\\\displaystyle 0\\\displaystyle x y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y^{2} z\\\displaystyle x y z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle - x y z\\\displaystyle x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x y z\\\displaystyle 0\\\displaystyle x^{2} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x y z\\\displaystyle x^{2} z\\\displaystyle 0\end{array}\right)\)
  • \(\mathcal{L}=\{l_0,...,l_{35}\}\)
  • Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 6 x y z + 6 x y + 6 x z - 6 x - 3 y^{2} z + 3 y^{2} - 3 y z^{2} + 10 y z - 7 y + 3 z^{2} - 7 z + 4\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 6 x y z - 6 x y - 6 x z + 6 x - 3 y^{2} z + 3 y^{2} - 3 y z^{2} + 4 y z - y + 3 z^{2} - z - 2\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 3 x^{2} z + 3 x^{2} - 6 x y z + 6 x y - 3 x z^{2} + 10 x z - 7 x + 6 y z - 6 y + 3 z^{2} - 7 z + 4\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 3 x^{2} z + 3 x^{2} + 6 x y z - 6 x y - 3 x z^{2} + 4 x z - x - 6 y z + 6 y + 3 z^{2} - z - 2\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 3 x^{2} y + 3 x^{2} - 3 x y^{2} - 6 x y z + 10 x y + 6 x z - 7 x + 3 y^{2} + 6 y z - 7 y - 6 z + 4\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 3 x^{2} y + 3 x^{2} - 3 x y^{2} + 6 x y z + 4 x y - 6 x z - x + 3 y^{2} - 6 y z - y + 6 z - 2\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(- 3 x z + 3 x + 6 y z - 6 y + 3 z^{2} - 4 z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(- 3 x z + 3 x - 6 y z + 6 y + 3 z^{2} + 2 z - 5\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
\(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4;
and \(s_{0}\) is a parametrisation of \(e_{4}\).

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x \left(- 3 x y + 3 x + 3 y^{2} + 6 y z - 4 y - 6 z + 1\right)\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
\(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4;
and \(s_{0}\) is a parametrisation of \(e_{4}\).

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x \left(- 3 x y + 3 x + 3 y^{2} - 6 y z + 2 y + 6 z - 5\right)\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
\(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5;
and \(s_{0}\) is a parametrisation of \(e_{5}\).

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle y \left(6 x z - 6 x - 3 y z + 3 y + 3 z^{2} - 4 z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
\(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5;
and \(s_{0}\) is a parametrisation of \(e_{5}\).

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle y \left(- 6 x z + 6 x - 3 y z + 3 y + 3 z^{2} + 2 z - 5\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{6}\)
where \(e_{6}\) is the 6th edge;
\(\hat{\boldsymbol{t}}_{6}\) is the tangent to edge 6;
and \(s_{0}\) is a parametrisation of \(e_{6}\).

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y \left(3 x^{2} - 3 x y + 6 x z - 4 x + 3 y - 6 z + 1\right)\end{array}\right)\)

This DOF is associated with edge 6 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{6}\)
where \(e_{6}\) is the 6th edge;
\(\hat{\boldsymbol{t}}_{6}\) is the tangent to edge 6;
and \(s_{0}\) is a parametrisation of \(e_{6}\).

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y \left(3 x^{2} - 3 x y - 6 x z + 2 x + 3 y + 6 z - 5\right)\end{array}\right)\)

This DOF is associated with edge 6 of the reference element.
\(\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{7}\)
where \(e_{7}\) is the 7th edge;
\(\hat{\boldsymbol{t}}_{7}\) is the tangent to edge 7;
and \(s_{0}\) is a parametrisation of \(e_{7}\).

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y \left(3 x + 3 y - 6 z - 2\right)\end{array}\right)\)

This DOF is associated with edge 7 of the reference element.
\(\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{7}\)
where \(e_{7}\) is the 7th edge;
\(\hat{\boldsymbol{t}}_{7}\) is the tangent to edge 7;
and \(s_{0}\) is a parametrisation of \(e_{7}\).

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y \left(3 x + 3 y + 6 z - 8\right)\end{array}\right)\)

This DOF is associated with edge 7 of the reference element.
\(\displaystyle l_{16}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{8}\)
where \(e_{8}\) is the 8th edge;
\(\hat{\boldsymbol{t}}_{8}\) is the tangent to edge 8;
and \(s_{0}\) is a parametrisation of \(e_{8}\).

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle z \left(6 x y - 6 x + 3 y^{2} - 3 y z - 4 y + 3 z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 8 of the reference element.
\(\displaystyle l_{17}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{8}\)
where \(e_{8}\) is the 8th edge;
\(\hat{\boldsymbol{t}}_{8}\) is the tangent to edge 8;
and \(s_{0}\) is a parametrisation of \(e_{8}\).

\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle z \left(- 6 x y + 6 x + 3 y^{2} - 3 y z + 2 y + 3 z - 5\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 8 of the reference element.
\(\displaystyle l_{18}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{9}\)
where \(e_{9}\) is the 9th edge;
\(\hat{\boldsymbol{t}}_{9}\) is the tangent to edge 9;
and \(s_{0}\) is a parametrisation of \(e_{9}\).

\(\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z \left(3 x^{2} + 6 x y - 3 x z - 4 x - 6 y + 3 z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 9 of the reference element.
\(\displaystyle l_{19}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{9}\)
where \(e_{9}\) is the 9th edge;
\(\hat{\boldsymbol{t}}_{9}\) is the tangent to edge 9;
and \(s_{0}\) is a parametrisation of \(e_{9}\).

\(\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle z \left(3 x^{2} - 6 x y - 3 x z + 2 x + 6 y + 3 z - 5\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 9 of the reference element.
\(\displaystyle l_{20}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{10}\)
where \(e_{10}\) is the 10th edge;
\(\hat{\boldsymbol{t}}_{10}\) is the tangent to edge 10;
and \(s_{0}\) is a parametrisation of \(e_{10}\).

\(\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x z \left(3 x - 6 y + 3 z - 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 10 of the reference element.
\(\displaystyle l_{21}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{10}\)
where \(e_{10}\) is the 10th edge;
\(\hat{\boldsymbol{t}}_{10}\) is the tangent to edge 10;
and \(s_{0}\) is a parametrisation of \(e_{10}\).

\(\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x z \left(3 x + 6 y + 3 z - 8\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 10 of the reference element.
\(\displaystyle l_{22}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{11}\)
where \(e_{11}\) is the 11th edge;
\(\hat{\boldsymbol{t}}_{11}\) is the tangent to edge 11;
and \(s_{0}\) is a parametrisation of \(e_{11}\).

\(\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle y z \left(- 6 x + 3 y + 3 z - 2\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 11 of the reference element.
\(\displaystyle l_{23}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{11}\)
where \(e_{11}\) is the 11th edge;
\(\hat{\boldsymbol{t}}_{11}\) is the tangent to edge 11;
and \(s_{0}\) is a parametrisation of \(e_{11}\).

\(\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle y z \left(6 x + 3 y + 3 z - 8\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 11 of the reference element.
\(\displaystyle l_{24}:\mathbf{v}\mapsto\displaystyle\int_{f_{0}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle -1\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{0}\) is the 0th face.

\(\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 x \left(- x z + x + z - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{25}:\mathbf{v}\mapsto\displaystyle\int_{f_{0}}\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{0}\) is the 0th face.

\(\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle 6 y \left(y z - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{26}:\mathbf{v}\mapsto\displaystyle\int_{f_{1}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle -1\end{array}\right)\cdot\mathbf{v}\)
where \(f_{1}\) is the 1st face.

\(\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 6 x \left(- x y + x + y - 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{27}:\mathbf{v}\mapsto\displaystyle\int_{f_{1}}\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{1}\) is the 1st face.

\(\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle 6 z \left(y z - y - z + 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{28}:\mathbf{v}\mapsto\displaystyle\int_{f_{2}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle -1\end{array}\right)\cdot\mathbf{v}\)
where \(f_{2}\) is the 2nd face.

\(\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 6 y \left(- x y + x + y - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{29}:\mathbf{v}\mapsto\displaystyle\int_{f_{2}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{2}\) is the 2nd face.

\(\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 z \left(x z - x - z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{30}:\mathbf{v}\mapsto\displaystyle\int_{f_{3}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle -1\end{array}\right)\cdot\mathbf{v}\)
where \(f_{3}\) is the 3th face.

\(\displaystyle \boldsymbol{\phi}_{30} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 6 x y \left(y - 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{31}:\mathbf{v}\mapsto\displaystyle\int_{f_{3}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{3}\) is the 3th face.

\(\displaystyle \boldsymbol{\phi}_{31} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 x z \left(1 - z\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{32}:\mathbf{v}\mapsto\displaystyle\int_{f_{4}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle -1\end{array}\right)\cdot\mathbf{v}\)
where \(f_{4}\) is the 4th face.

\(\displaystyle \boldsymbol{\phi}_{32} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 6 x y \left(x - 1\right)\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{33}:\mathbf{v}\mapsto\displaystyle\int_{f_{4}}\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{4}\) is the 4th face.

\(\displaystyle \boldsymbol{\phi}_{33} = \left(\begin{array}{c}\displaystyle 6 y z \left(1 - z\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{34}:\mathbf{v}\mapsto\displaystyle\int_{f_{5}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle -1\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{5}\) is the 5th face.

\(\displaystyle \boldsymbol{\phi}_{34} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 x z \left(x - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{35}:\mathbf{v}\mapsto\displaystyle\int_{f_{5}}\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{5}\) is the 5th face.

\(\displaystyle \boldsymbol{\phi}_{35} = \left(\begin{array}{c}\displaystyle 6 y z \left(1 - y\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
  • \(R\) is the reference hexahedron. The following numbering of the subentities of the reference is used:
  • \(\mathcal{V}\) is spanned by: \(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x z\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle x z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle x z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z^{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{3}\\\displaystyle - y z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - z^{3}\\\displaystyle 0\\\displaystyle x z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z^{2}\\\displaystyle - x z^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y z^{2}\\\displaystyle - y^{2} z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y z^{2}\\\displaystyle 0\\\displaystyle x y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2} z\\\displaystyle - x y z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2} z\\\displaystyle - y^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y^{2} z\\\displaystyle 0\\\displaystyle x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{3}\\\displaystyle - x y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x z^{2}\\\displaystyle 0\\\displaystyle x^{2} z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y z\\\displaystyle - x^{2} z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x y z\\\displaystyle 0\\\displaystyle x^{2} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x y^{2}\\\displaystyle - x^{2} y\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x^{2} z\\\displaystyle 0\\\displaystyle x^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle x^{2} y\\\displaystyle - x^{3}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z^{3}\\\displaystyle x z^{3}\\\displaystyle 3 x y z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{3} z\\\displaystyle 3 x y^{2} z\\\displaystyle x y^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 3 x^{2} y z\\\displaystyle x^{3} z\\\displaystyle x^{3} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle z^{3}\\\displaystyle 0\\\displaystyle 3 x z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y z^{2}\\\displaystyle x z^{2}\\\displaystyle 2 x y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{2} z\\\displaystyle 2 x y z\\\displaystyle x y^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle y^{3}\\\displaystyle 3 x y^{2}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle z^{3}\\\displaystyle 3 y z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 2 x y z\\\displaystyle x^{2} z\\\displaystyle x^{2} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 3 x^{2} y\\\displaystyle x^{3}\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 y^{2} z\\\displaystyle y^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 3 x^{2} z\\\displaystyle 0\\\displaystyle x^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle - x z^{3}\\\displaystyle x y z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y z^{3}\\\displaystyle 0\\\displaystyle x y z^{2}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - y^{3} z\\\displaystyle x y^{2} z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle - x y z^{2}\\\displaystyle x y^{2} z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x y z^{2}\\\displaystyle 0\\\displaystyle x^{2} y z\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x y^{2} z\\\displaystyle x^{2} y z\\\displaystyle 0\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle 0\\\displaystyle - x y^{2} z\\\displaystyle x y^{3}\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x^{2} y z\\\displaystyle 0\\\displaystyle x^{3} y\end{array}\right)\), \(\left(\begin{array}{c}\displaystyle - x^{2} y z\\\displaystyle x^{3} z\\\displaystyle 0\end{array}\right)\)
  • \(\mathcal{L}=\{l_0,...,l_{65}\}\)
  • Functionals and basis functions:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 30 x^{2} y z - 30 x^{2} y - 30 x^{2} z + 30 x^{2} + 9 x y^{2} z - 9 x y^{2} + 9 x y z^{2} - 54 x y z + 45 x y - 9 x z^{2} + 45 x z - 36 x + 10 y^{3} z - 10 y^{3} - \frac{45 y^{2} z}{2} + \frac{45 y^{2}}{2} + 10 y z^{3} - \frac{45 y z^{2}}{2} + 34 y z - \frac{43 y}{2} - 10 z^{3} + \frac{45 z^{2}}{2} - \frac{43 z}{2} + 9\\\displaystyle \frac{9 x \left(- 2 x y z + 2 x y + x z - x + 2 y z - 2 y - z + 1\right)}{2}\\\displaystyle \frac{9 x \left(- 2 x y z + x y + 2 x z - x + 2 y z - y - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - 15 x^{2} y z + 15 x^{2} y + 15 x^{2} z - 15 x^{2} + 15 x y z - 15 x y - 15 x z + 15 x + 10 y^{3} z - 10 y^{3} - 18 y^{2} z + 18 y^{2} + 10 y z^{3} - 18 y z^{2} + \frac{29 y z}{2} - \frac{13 y}{2} - 10 z^{3} + 18 z^{2} - \frac{13 z}{2} - \frac{3}{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
\(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0;
and \(s_{0}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 30 x^{2} y z - 30 x^{2} y - 30 x^{2} z + 30 x^{2} - 9 x y^{2} z + 9 x y^{2} - 9 x y z^{2} - 6 x y z + 15 x y + 9 x z^{2} + 15 x z - 24 x + 10 y^{3} z - 10 y^{3} - \frac{27 y^{2} z}{2} + \frac{27 y^{2}}{2} + 10 y z^{3} - \frac{27 y z^{2}}{2} + 10 y z - \frac{13 y}{2} - 10 z^{3} + \frac{27 z^{2}}{2} - \frac{13 z}{2} + 3\\\displaystyle \frac{9 x \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)}{2}\\\displaystyle \frac{9 x \left(2 x y z - x y - 2 x z + x - 2 y z + y + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(- 2 x y z + 2 x y + 2 x z - 2 x + y z - y - z + 1\right)}{2}\\\displaystyle 10 x^{3} z - 10 x^{3} + 9 x^{2} y z - 9 x^{2} y - \frac{45 x^{2} z}{2} + \frac{45 x^{2}}{2} + 30 x y^{2} z - 30 x y^{2} + 9 x y z^{2} - 54 x y z + 45 x y + 10 x z^{3} - \frac{45 x z^{2}}{2} + 34 x z - \frac{43 x}{2} - 30 y^{2} z + 30 y^{2} - 9 y z^{2} + 45 y z - 36 y - 10 z^{3} + \frac{45 z^{2}}{2} - \frac{43 z}{2} + 9\\\displaystyle \frac{9 y \left(- 2 x y z + x y + 2 x z - x + 2 y z - y - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 10 x^{3} z - 10 x^{3} - 18 x^{2} z + 18 x^{2} - 15 x y^{2} z + 15 x y^{2} + 15 x y z - 15 x y + 10 x z^{3} - 18 x z^{2} + \frac{29 x z}{2} - \frac{13 x}{2} + 15 y^{2} z - 15 y^{2} - 15 y z + 15 y - 10 z^{3} + 18 z^{2} - \frac{13 z}{2} - \frac{3}{2}\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
\(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1;
and \(s_{0}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)}{2}\\\displaystyle 10 x^{3} z - 10 x^{3} - 9 x^{2} y z + 9 x^{2} y - \frac{27 x^{2} z}{2} + \frac{27 x^{2}}{2} + 30 x y^{2} z - 30 x y^{2} - 9 x y z^{2} - 6 x y z + 15 x y + 10 x z^{3} - \frac{27 x z^{2}}{2} + 10 x z - \frac{13 x}{2} - 30 y^{2} z + 30 y^{2} + 9 y z^{2} + 15 y z - 24 y - 10 z^{3} + \frac{27 z^{2}}{2} - \frac{13 z}{2} + 3\\\displaystyle \frac{9 y \left(2 x y z - x y - 2 x z + x - 2 y z + y + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle \frac{9 z \left(- 2 x y z + 2 x y + 2 x z - 2 x + y z - y - z + 1\right)}{2}\\\displaystyle \frac{9 z \left(- 2 x y z + 2 x y + x z - x + 2 y z - 2 y - z + 1\right)}{2}\\\displaystyle 10 x^{3} y - 10 x^{3} + 9 x^{2} y z - \frac{45 x^{2} y}{2} - 9 x^{2} z + \frac{45 x^{2}}{2} + 10 x y^{3} + 9 x y^{2} z - \frac{45 x y^{2}}{2} + 30 x y z^{2} - 54 x y z + 34 x y - 30 x z^{2} + 45 x z - \frac{43 x}{2} - 10 y^{3} - 9 y^{2} z + \frac{45 y^{2}}{2} - 30 y z^{2} + 45 y z - \frac{43 y}{2} + 30 z^{2} - 36 z + 9\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 10 x^{3} y - 10 x^{3} - 18 x^{2} y + 18 x^{2} + 10 x y^{3} - 18 x y^{2} - 15 x y z^{2} + 15 x y z + \frac{29 x y}{2} + 15 x z^{2} - 15 x z - \frac{13 x}{2} - 10 y^{3} + 18 y^{2} + 15 y z^{2} - 15 y z - \frac{13 y}{2} - 15 z^{2} + 15 z - \frac{3}{2}\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
\(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2;
and \(s_{0}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle \frac{9 z \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)}{2}\\\displaystyle \frac{9 z \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)}{2}\\\displaystyle 10 x^{3} y - 10 x^{3} - 9 x^{2} y z - \frac{27 x^{2} y}{2} + 9 x^{2} z + \frac{27 x^{2}}{2} + 10 x y^{3} - 9 x y^{2} z - \frac{27 x y^{2}}{2} + 30 x y z^{2} - 6 x y z + 10 x y - 30 x z^{2} + 15 x z - \frac{13 x}{2} - 10 y^{3} + 9 y^{2} z + \frac{27 y^{2}}{2} - 30 y z^{2} + 15 y z - \frac{13 y}{2} + 30 z^{2} - 24 z + 3\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(- 2 x y z + 2 x y + 2 x z - 2 x + y z - y - z + 1\right)}{2}\\\displaystyle \frac{x \left(- 20 x^{2} z + 20 x^{2} + 18 x y z - 18 x y + 15 x z - 15 x - 60 y^{2} z + 60 y^{2} - 18 y z^{2} + 72 y z - 54 y - 20 z^{3} + 45 z^{2} - 38 z + 13\right)}{2}\\\displaystyle \frac{9 x y \left(2 y z - y - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \frac{x \left(- 20 x^{2} z + 20 x^{2} + 24 x z - 24 x + 30 y^{2} z - 30 y^{2} - 30 y z + 30 y - 20 z^{3} + 36 z^{2} - 17 z + 1\right)}{2}\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
\(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3;
and \(s_{0}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle \frac{9 y \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)}{2}\\\displaystyle \frac{x \left(- 20 x^{2} z + 20 x^{2} - 18 x y z + 18 x y + 33 x z - 33 x - 60 y^{2} z + 60 y^{2} + 18 y z^{2} + 48 y z - 66 y - 20 z^{3} + 27 z^{2} - 26 z + 19\right)}{2}\\\displaystyle \frac{9 x y \left(- 2 y z + y + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
\(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4;
and \(s_{0}\) is a parametrisation of \(e_{4}\).

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle \frac{9 z \left(- 2 x y z + 2 x y + 2 x z - 2 x + y z - y - z + 1\right)}{2}\\\displaystyle \frac{9 x z \left(2 y z - 2 y - z + 1\right)}{2}\\\displaystyle \frac{x \left(- 20 x^{2} y + 20 x^{2} + 18 x y z + 15 x y - 18 x z - 15 x - 20 y^{3} - 18 y^{2} z + 45 y^{2} - 60 y z^{2} + 72 y z - 38 y + 60 z^{2} - 54 z + 13\right)}{2}\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
\(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4;
and \(s_{0}\) is a parametrisation of \(e_{4}\).

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \frac{x \left(- 20 x^{2} y + 20 x^{2} + 24 x y - 24 x - 20 y^{3} + 36 y^{2} + 30 y z^{2} - 30 y z - 17 y - 30 z^{2} + 30 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{14}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
\(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4;
and \(s_{0}\) is a parametrisation of \(e_{4}\).

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle \frac{9 z \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)}{2}\\\displaystyle \frac{9 x z \left(- 2 y z + 2 y + z - 1\right)}{2}\\\displaystyle \frac{x \left(- 20 x^{2} y + 20 x^{2} - 18 x y z + 33 x y + 18 x z - 33 x - 20 y^{3} + 18 y^{2} z + 27 y^{2} - 60 y z^{2} + 48 y z - 26 y + 60 z^{2} - 66 z + 19\right)}{2}\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{15}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
\(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5;
and \(s_{0}\) is a parametrisation of \(e_{5}\).

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle \frac{y \left(- 60 x^{2} z + 60 x^{2} + 18 x y z - 18 x y - 18 x z^{2} + 72 x z - 54 x - 20 y^{2} z + 20 y^{2} + 15 y z - 15 y - 20 z^{3} + 45 z^{2} - 38 z + 13\right)}{2}\\\displaystyle \frac{9 x \left(- 2 x y z + 2 x y + x z - x + 2 y z - 2 y - z + 1\right)}{2}\\\displaystyle \frac{9 x y \left(2 x z - x - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{16}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
\(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5;
and \(s_{0}\) is a parametrisation of \(e_{5}\).

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle \frac{y \left(30 x^{2} z - 30 x^{2} - 30 x z + 30 x - 20 y^{2} z + 20 y^{2} + 24 y z - 24 y - 20 z^{3} + 36 z^{2} - 17 z + 1\right)}{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{17}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
\(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5;
and \(s_{0}\) is a parametrisation of \(e_{5}\).

\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle \frac{y \left(- 60 x^{2} z + 60 x^{2} - 18 x y z + 18 x y + 18 x z^{2} + 48 x z - 66 x - 20 y^{2} z + 20 y^{2} + 33 y z - 33 y - 20 z^{3} + 27 z^{2} - 26 z + 19\right)}{2}\\\displaystyle \frac{9 x \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)}{2}\\\displaystyle \frac{9 x y \left(- 2 x z + x + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{18}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{6}\)
where \(e_{6}\) is the 6th edge;
\(\hat{\boldsymbol{t}}_{6}\) is the tangent to edge 6;
and \(s_{0}\) is a parametrisation of \(e_{6}\).

\(\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(2 x z - 2 x - z + 1\right)}{2}\\\displaystyle \frac{9 z \left(- 2 x y z + 2 x y + x z - x + 2 y z - 2 y - z + 1\right)}{2}\\\displaystyle \frac{y \left(- 20 x^{3} - 18 x^{2} z + 45 x^{2} - 20 x y^{2} + 18 x y z + 15 x y - 60 x z^{2} + 72 x z - 38 x + 20 y^{2} - 18 y z - 15 y + 60 z^{2} - 54 z + 13\right)}{2}\end{array}\right)\)

This DOF is associated with edge 6 of the reference element.
\(\displaystyle l_{19}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{6}\)
where \(e_{6}\) is the 6th edge;
\(\hat{\boldsymbol{t}}_{6}\) is the tangent to edge 6;
and \(s_{0}\) is a parametrisation of \(e_{6}\).

\(\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \frac{y \left(- 20 x^{3} + 36 x^{2} - 20 x y^{2} + 24 x y + 30 x z^{2} - 30 x z - 17 x + 20 y^{2} - 24 y - 30 z^{2} + 30 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 6 of the reference element.
\(\displaystyle l_{20}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{6}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{6}\)
where \(e_{6}\) is the 6th edge;
\(\hat{\boldsymbol{t}}_{6}\) is the tangent to edge 6;
and \(s_{0}\) is a parametrisation of \(e_{6}\).

\(\displaystyle \boldsymbol{\phi}_{20} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(- 2 x z + 2 x + z - 1\right)}{2}\\\displaystyle \frac{9 z \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)}{2}\\\displaystyle \frac{y \left(- 20 x^{3} + 18 x^{2} z + 27 x^{2} - 20 x y^{2} - 18 x y z + 33 x y - 60 x z^{2} + 48 x z - 26 x + 20 y^{2} + 18 y z - 33 y + 60 z^{2} - 66 z + 19\right)}{2}\end{array}\right)\)

This DOF is associated with edge 6 of the reference element.
\(\displaystyle l_{21}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{7}\)
where \(e_{7}\) is the 7th edge;
\(\hat{\boldsymbol{t}}_{7}\) is the tangent to edge 7;
and \(s_{0}\) is a parametrisation of \(e_{7}\).

\(\displaystyle \boldsymbol{\phi}_{21} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(2 x z - 2 x - z + 1\right)}{2}\\\displaystyle \frac{9 x z \left(2 y z - 2 y - z + 1\right)}{2}\\\displaystyle \frac{x y \left(20 x^{2} - 18 x z - 15 x + 20 y^{2} - 18 y z - 15 y + 60 z^{2} - 36 z + 8\right)}{2}\end{array}\right)\)

This DOF is associated with edge 7 of the reference element.
\(\displaystyle l_{22}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{7}\)
where \(e_{7}\) is the 7th edge;
\(\hat{\boldsymbol{t}}_{7}\) is the tangent to edge 7;
and \(s_{0}\) is a parametrisation of \(e_{7}\).

\(\displaystyle \boldsymbol{\phi}_{22} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle \frac{x y \left(20 x^{2} - 24 x + 20 y^{2} - 24 y - 30 z^{2} + 30 z + 5\right)}{2}\end{array}\right)\)

This DOF is associated with edge 7 of the reference element.
\(\displaystyle l_{23}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{7}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{7}\)
where \(e_{7}\) is the 7th edge;
\(\hat{\boldsymbol{t}}_{7}\) is the tangent to edge 7;
and \(s_{0}\) is a parametrisation of \(e_{7}\).

\(\displaystyle \boldsymbol{\phi}_{23} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(- 2 x z + 2 x + z - 1\right)}{2}\\\displaystyle \frac{9 x z \left(- 2 y z + 2 y + z - 1\right)}{2}\\\displaystyle \frac{x y \left(20 x^{2} + 18 x z - 33 x + 20 y^{2} + 18 y z - 33 y + 60 z^{2} - 84 z + 32\right)}{2}\end{array}\right)\)

This DOF is associated with edge 7 of the reference element.
\(\displaystyle l_{24}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{8}\)
where \(e_{8}\) is the 8th edge;
\(\hat{\boldsymbol{t}}_{8}\) is the tangent to edge 8;
and \(s_{0}\) is a parametrisation of \(e_{8}\).

\(\displaystyle \boldsymbol{\phi}_{24} = \left(\begin{array}{c}\displaystyle \frac{z \left(- 60 x^{2} y + 60 x^{2} - 18 x y^{2} + 18 x y z + 72 x y - 18 x z - 54 x - 20 y^{3} + 45 y^{2} - 20 y z^{2} + 15 y z - 38 y + 20 z^{2} - 15 z + 13\right)}{2}\\\displaystyle \frac{9 x z \left(2 x y - x - 2 y + 1\right)}{2}\\\displaystyle \frac{9 x \left(- 2 x y z + x y + 2 x z - x + 2 y z - y - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 8 of the reference element.
\(\displaystyle l_{25}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{8}\)
where \(e_{8}\) is the 8th edge;
\(\hat{\boldsymbol{t}}_{8}\) is the tangent to edge 8;
and \(s_{0}\) is a parametrisation of \(e_{8}\).

\(\displaystyle \boldsymbol{\phi}_{25} = \left(\begin{array}{c}\displaystyle \frac{z \left(30 x^{2} y - 30 x^{2} - 30 x y + 30 x - 20 y^{3} + 36 y^{2} - 20 y z^{2} + 24 y z - 17 y + 20 z^{2} - 24 z + 1\right)}{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 8 of the reference element.
\(\displaystyle l_{26}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{8}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{8}\)
where \(e_{8}\) is the 8th edge;
\(\hat{\boldsymbol{t}}_{8}\) is the tangent to edge 8;
and \(s_{0}\) is a parametrisation of \(e_{8}\).

\(\displaystyle \boldsymbol{\phi}_{26} = \left(\begin{array}{c}\displaystyle \frac{z \left(- 60 x^{2} y + 60 x^{2} + 18 x y^{2} - 18 x y z + 48 x y + 18 x z - 66 x - 20 y^{3} + 27 y^{2} - 20 y z^{2} + 33 y z - 26 y + 20 z^{2} - 33 z + 19\right)}{2}\\\displaystyle \frac{9 x z \left(- 2 x y + x + 2 y - 1\right)}{2}\\\displaystyle \frac{9 x \left(2 x y z - x y - 2 x z + x - 2 y z + y + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 8 of the reference element.
\(\displaystyle l_{27}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{9}\)
where \(e_{9}\) is the 9th edge;
\(\hat{\boldsymbol{t}}_{9}\) is the tangent to edge 9;
and \(s_{0}\) is a parametrisation of \(e_{9}\).

\(\displaystyle \boldsymbol{\phi}_{27} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(2 x y - 2 x - y + 1\right)}{2}\\\displaystyle \frac{z \left(- 20 x^{3} - 18 x^{2} y + 45 x^{2} - 60 x y^{2} + 18 x y z + 72 x y - 20 x z^{2} + 15 x z - 38 x + 60 y^{2} - 18 y z - 54 y + 20 z^{2} - 15 z + 13\right)}{2}\\\displaystyle \frac{9 y \left(- 2 x y z + x y + 2 x z - x + 2 y z - y - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 9 of the reference element.
\(\displaystyle l_{28}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{9}\)
where \(e_{9}\) is the 9th edge;
\(\hat{\boldsymbol{t}}_{9}\) is the tangent to edge 9;
and \(s_{0}\) is a parametrisation of \(e_{9}\).

\(\displaystyle \boldsymbol{\phi}_{28} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \frac{z \left(- 20 x^{3} + 36 x^{2} + 30 x y^{2} - 30 x y - 20 x z^{2} + 24 x z - 17 x - 30 y^{2} + 30 y + 20 z^{2} - 24 z + 1\right)}{2}\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 9 of the reference element.
\(\displaystyle l_{29}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{9}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{9}\)
where \(e_{9}\) is the 9th edge;
\(\hat{\boldsymbol{t}}_{9}\) is the tangent to edge 9;
and \(s_{0}\) is a parametrisation of \(e_{9}\).

\(\displaystyle \boldsymbol{\phi}_{29} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(- 2 x y + 2 x + y - 1\right)}{2}\\\displaystyle \frac{z \left(- 20 x^{3} + 18 x^{2} y + 27 x^{2} - 60 x y^{2} - 18 x y z + 48 x y - 20 x z^{2} + 33 x z - 26 x + 60 y^{2} + 18 y z - 66 y + 20 z^{2} - 33 z + 19\right)}{2}\\\displaystyle \frac{9 y \left(2 x y z - x y - 2 x z + x - 2 y z + y + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 9 of the reference element.
\(\displaystyle l_{30}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{10}\)
where \(e_{10}\) is the 10th edge;
\(\hat{\boldsymbol{t}}_{10}\) is the tangent to edge 10;
and \(s_{0}\) is a parametrisation of \(e_{10}\).

\(\displaystyle \boldsymbol{\phi}_{30} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(2 x y - 2 x - y + 1\right)}{2}\\\displaystyle \frac{x z \left(20 x^{2} - 18 x y - 15 x + 60 y^{2} - 18 y z - 36 y + 20 z^{2} - 15 z + 8\right)}{2}\\\displaystyle \frac{9 x y \left(2 y z - y - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 10 of the reference element.
\(\displaystyle l_{31}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{10}\)
where \(e_{10}\) is the 10th edge;
\(\hat{\boldsymbol{t}}_{10}\) is the tangent to edge 10;
and \(s_{0}\) is a parametrisation of \(e_{10}\).

\(\displaystyle \boldsymbol{\phi}_{31} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle \frac{x z \left(20 x^{2} - 24 x - 30 y^{2} + 30 y + 20 z^{2} - 24 z + 5\right)}{2}\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 10 of the reference element.
\(\displaystyle l_{32}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{10}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{10}\)
where \(e_{10}\) is the 10th edge;
\(\hat{\boldsymbol{t}}_{10}\) is the tangent to edge 10;
and \(s_{0}\) is a parametrisation of \(e_{10}\).

\(\displaystyle \boldsymbol{\phi}_{32} = \left(\begin{array}{c}\displaystyle \frac{9 y z \left(- 2 x y + 2 x + y - 1\right)}{2}\\\displaystyle \frac{x z \left(20 x^{2} + 18 x y - 33 x + 60 y^{2} + 18 y z - 84 y + 20 z^{2} - 33 z + 32\right)}{2}\\\displaystyle \frac{9 x y \left(- 2 y z + y + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 10 of the reference element.
\(\displaystyle l_{33}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(2 s_{0}^{2} - 3 s_{0} + 1)\hat{\boldsymbol{t}}_{11}\)
where \(e_{11}\) is the 11th edge;
\(\hat{\boldsymbol{t}}_{11}\) is the tangent to edge 11;
and \(s_{0}\) is a parametrisation of \(e_{11}\).

\(\displaystyle \boldsymbol{\phi}_{33} = \left(\begin{array}{c}\displaystyle \frac{y z \left(60 x^{2} - 18 x y - 18 x z - 36 x + 20 y^{2} - 15 y + 20 z^{2} - 15 z + 8\right)}{2}\\\displaystyle \frac{9 x z \left(2 x y - x - 2 y + 1\right)}{2}\\\displaystyle \frac{9 x y \left(2 x z - x - 2 z + 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 11 of the reference element.
\(\displaystyle l_{34}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(4 s_{0} \left(1 - s_{0}\right))\hat{\boldsymbol{t}}_{11}\)
where \(e_{11}\) is the 11th edge;
\(\hat{\boldsymbol{t}}_{11}\) is the tangent to edge 11;
and \(s_{0}\) is a parametrisation of \(e_{11}\).

\(\displaystyle \boldsymbol{\phi}_{34} = \left(\begin{array}{c}\displaystyle \frac{y z \left(- 30 x^{2} + 30 x + 20 y^{2} - 24 y + 20 z^{2} - 24 z + 5\right)}{2}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 11 of the reference element.
\(\displaystyle l_{35}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{11}}\boldsymbol{v}\cdot(s_{0} \left(2 s_{0} - 1\right))\hat{\boldsymbol{t}}_{11}\)
where \(e_{11}\) is the 11th edge;
\(\hat{\boldsymbol{t}}_{11}\) is the tangent to edge 11;
and \(s_{0}\) is a parametrisation of \(e_{11}\).

\(\displaystyle \boldsymbol{\phi}_{35} = \left(\begin{array}{c}\displaystyle \frac{y z \left(60 x^{2} + 18 x y + 18 x z - 84 x + 20 y^{2} - 33 y + 20 z^{2} - 33 z + 32\right)}{2}\\\displaystyle \frac{9 x z \left(- 2 x y + x + 2 y - 1\right)}{2}\\\displaystyle \frac{9 x y \left(- 2 x z + x + 2 z - 1\right)}{2}\end{array}\right)\)

This DOF is associated with edge 11 of the reference element.
\(\displaystyle l_{36}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)
where \(f_{0}\) is the 0th face.

\(\displaystyle \boldsymbol{\phi}_{36} = \left(\begin{array}{c}\displaystyle 3 y \left(- 6 x y z + 6 x y + 6 x z - 6 x - 20 y^{2} z + 20 y^{2} + 35 y z - 35 y - 15 z + 15\right)\\\displaystyle 9 x \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{37}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{0}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)\)
where \(f_{0}\) is the 0th face.

\(\displaystyle \boldsymbol{\phi}_{37} = \left(\begin{array}{c}\displaystyle 9 y \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)\\\displaystyle 3 x \left(- 20 x^{2} z + 20 x^{2} - 6 x y z + 6 x y + 35 x z - 35 x + 6 y z - 6 y - 15 z + 15\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{38}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)
where \(f_{1}\) is the 1st face.

\(\displaystyle \boldsymbol{\phi}_{38} = \left(\begin{array}{c}\displaystyle 3 z \left(- 6 x y z + 6 x y + 6 x z - 6 x - 20 y z^{2} + 35 y z - 15 y + 20 z^{2} - 35 z + 15\right)\\\displaystyle 0\\\displaystyle 9 x \left(2 x y z - x y - 2 x z + x - 2 y z + y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{39}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{1}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)
where \(f_{1}\) is the 1st face.

\(\displaystyle \boldsymbol{\phi}_{39} = \left(\begin{array}{c}\displaystyle 9 z \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)\\\displaystyle 0\\\displaystyle 3 x \left(- 20 x^{2} y + 20 x^{2} - 6 x y z + 35 x y + 6 x z - 35 x + 6 y z - 15 y - 6 z + 15\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{40}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)\)
where \(f_{2}\) is the 2nd face.

\(\displaystyle \boldsymbol{\phi}_{40} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 z \left(- 6 x y z + 6 x y - 20 x z^{2} + 35 x z - 15 x + 6 y z - 6 y + 20 z^{2} - 35 z + 15\right)\\\displaystyle 9 y \left(2 x y z - x y - 2 x z + x - 2 y z + y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{41}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{2}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)
where \(f_{2}\) is the 2nd face.

\(\displaystyle \boldsymbol{\phi}_{41} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 9 z \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)\\\displaystyle 3 y \left(- 20 x y^{2} - 6 x y z + 35 x y + 6 x z - 15 x + 20 y^{2} + 6 y z - 35 y - 6 z + 15\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{42}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)\)
where \(f_{3}\) is the 3th face.

\(\displaystyle \boldsymbol{\phi}_{42} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 x z \left(6 y z - 6 y + 20 z^{2} - 35 z + 15\right)\\\displaystyle 9 x y \left(- 2 y z + y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{43}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{3}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)
where \(f_{3}\) is the 3th face.

\(\displaystyle \boldsymbol{\phi}_{43} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 9 x z \left(- 2 y z + 2 y + z - 1\right)\\\displaystyle 3 x y \left(20 y^{2} + 6 y z - 35 y - 6 z + 15\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{44}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)
where \(f_{4}\) is the 4th face.

\(\displaystyle \boldsymbol{\phi}_{44} = \left(\begin{array}{c}\displaystyle 3 y z \left(6 x z - 6 x + 20 z^{2} - 35 z + 15\right)\\\displaystyle 0\\\displaystyle 9 x y \left(- 2 x z + x + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{45}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{4}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\0\\1\end{array}\right)\)
where \(f_{4}\) is the 4th face.

\(\displaystyle \boldsymbol{\phi}_{45} = \left(\begin{array}{c}\displaystyle 9 y z \left(- 2 x z + 2 x + z - 1\right)\\\displaystyle 0\\\displaystyle 3 x y \left(20 x^{2} + 6 x z - 35 x - 6 z + 15\right)\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{46}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot\left(\begin{array}{c}1\\0\\0\end{array}\right)\)
where \(f_{5}\) is the 5th face.

\(\displaystyle \boldsymbol{\phi}_{46} = \left(\begin{array}{c}\displaystyle 3 y z \left(6 x y - 6 x + 20 y^{2} - 35 y + 15\right)\\\displaystyle 9 x z \left(- 2 x y + x + 2 y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{47}:\boldsymbol{v}\mapsto\displaystyle\int_{f_{5}}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1\\0\end{array}\right)\)
where \(f_{5}\) is the 5th face.

\(\displaystyle \boldsymbol{\phi}_{47} = \left(\begin{array}{c}\displaystyle 9 y z \left(- 2 x y + 2 x + y - 1\right)\\\displaystyle 3 x z \left(20 x^{2} + 6 x y - 35 x - 6 y + 15\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{48}:\mathbf{v}\mapsto\displaystyle\int_{f_{0}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle - 2 s_{0}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{0}\) is the 0th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{0}\).

\(\displaystyle \boldsymbol{\phi}_{48} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 30 x \left(- 2 x^{2} z + 2 x^{2} + 3 x z - 3 x - z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{49}:\mathbf{v}\mapsto\displaystyle\int_{f_{0}}\left(\begin{array}{c}\displaystyle s_{0}\\\displaystyle - s_{1}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{0}\) is the 0th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{0}\).

\(\displaystyle \boldsymbol{\phi}_{49} = \left(\begin{array}{c}\displaystyle 18 y \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)\\\displaystyle 18 x \left(- 2 x y z + 2 x y + x z - x + 2 y z - 2 y - z + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{50}:\mathbf{v}\mapsto\displaystyle\int_{f_{0}}\left(\begin{array}{c}\displaystyle 2 s_{1}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{0}\) is the 0th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{0}\).

\(\displaystyle \boldsymbol{\phi}_{50} = \left(\begin{array}{c}\displaystyle 30 y \left(2 y^{2} z - 2 y^{2} - 3 y z + 3 y + z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{51}:\mathbf{v}\mapsto\displaystyle\int_{f_{1}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 2 s_{0}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{1}\) is the 1st face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{1}\).

\(\displaystyle \boldsymbol{\phi}_{51} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 30 x \left(- 2 x^{2} y + 2 x^{2} + 3 x y - 3 x - y + 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{52}:\mathbf{v}\mapsto\displaystyle\int_{f_{1}}\left(\begin{array}{c}\displaystyle s_{0}\\\displaystyle 0\\\displaystyle - s_{1}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{1}\) is the 1st face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{1}\).

\(\displaystyle \boldsymbol{\phi}_{52} = \left(\begin{array}{c}\displaystyle 18 z \left(2 x y z - 2 x y - 2 x z + 2 x - y z + y + z - 1\right)\\\displaystyle 0\\\displaystyle 18 x \left(- 2 x y z + x y + 2 x z - x + 2 y z - y - 2 z + 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{53}:\mathbf{v}\mapsto\displaystyle\int_{f_{1}}\left(\begin{array}{c}\displaystyle 2 s_{1}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{1}\) is the 1st face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{1}\).

\(\displaystyle \boldsymbol{\phi}_{53} = \left(\begin{array}{c}\displaystyle 30 z \left(2 y z^{2} - 3 y z + y - 2 z^{2} + 3 z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{54}:\mathbf{v}\mapsto\displaystyle\int_{f_{2}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 2 s_{0}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{2}\) is the 2nd face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{2}\).

\(\displaystyle \boldsymbol{\phi}_{54} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 30 y \left(- 2 x y^{2} + 3 x y - x + 2 y^{2} - 3 y + 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{55}:\mathbf{v}\mapsto\displaystyle\int_{f_{2}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle s_{0}\\\displaystyle - s_{1}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{2}\) is the 2nd face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{2}\).

\(\displaystyle \boldsymbol{\phi}_{55} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 18 z \left(2 x y z - 2 x y - x z + x - 2 y z + 2 y + z - 1\right)\\\displaystyle 18 y \left(- 2 x y z + x y + 2 x z - x + 2 y z - y - 2 z + 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{56}:\mathbf{v}\mapsto\displaystyle\int_{f_{2}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 s_{1}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{2}\) is the 2nd face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{2}\).

\(\displaystyle \boldsymbol{\phi}_{56} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 30 z \left(2 x z^{2} - 3 x z + x - 2 z^{2} + 3 z - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{57}:\mathbf{v}\mapsto\displaystyle\int_{f_{3}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 2 s_{0}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{3}\) is the 3th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{3}\).

\(\displaystyle \boldsymbol{\phi}_{57} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 30 x y \left(2 y^{2} - 3 y + 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{58}:\mathbf{v}\mapsto\displaystyle\int_{f_{3}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle s_{0}\\\displaystyle - s_{1}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{3}\) is the 3th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{3}\).

\(\displaystyle \boldsymbol{\phi}_{58} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 18 x z \left(- 2 y z + 2 y + z - 1\right)\\\displaystyle 18 x y \left(2 y z - y - 2 z + 1\right)\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{59}:\mathbf{v}\mapsto\displaystyle\int_{f_{3}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 s_{1}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{3}\) is the 3th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{3}\).

\(\displaystyle \boldsymbol{\phi}_{59} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 30 x z \left(- 2 z^{2} + 3 z - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{60}:\mathbf{v}\mapsto\displaystyle\int_{f_{4}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle - 2 s_{0}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{4}\) is the 4th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{4}\).

\(\displaystyle \boldsymbol{\phi}_{60} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 30 x y \left(2 x^{2} - 3 x + 1\right)\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{61}:\mathbf{v}\mapsto\displaystyle\int_{f_{4}}\left(\begin{array}{c}\displaystyle s_{0}\\\displaystyle 0\\\displaystyle - s_{1}\end{array}\right)\cdot\mathbf{v}\)
where \(f_{4}\) is the 4th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{4}\).

\(\displaystyle \boldsymbol{\phi}_{61} = \left(\begin{array}{c}\displaystyle 18 y z \left(- 2 x z + 2 x + z - 1\right)\\\displaystyle 0\\\displaystyle 18 x y \left(2 x z - x - 2 z + 1\right)\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{62}:\mathbf{v}\mapsto\displaystyle\int_{f_{4}}\left(\begin{array}{c}\displaystyle 2 s_{1}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{4}\) is the 4th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{4}\).

\(\displaystyle \boldsymbol{\phi}_{62} = \left(\begin{array}{c}\displaystyle 30 y z \left(- 2 z^{2} + 3 z - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 4 of the reference element.
\(\displaystyle l_{63}:\mathbf{v}\mapsto\displaystyle\int_{f_{5}}\left(\begin{array}{c}\displaystyle 0\\\displaystyle - 2 s_{0}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{5}\) is the 5th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{5}\).

\(\displaystyle \boldsymbol{\phi}_{63} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 30 x z \left(2 x^{2} - 3 x + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{64}:\mathbf{v}\mapsto\displaystyle\int_{f_{5}}\left(\begin{array}{c}\displaystyle s_{0}\\\displaystyle - s_{1}\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{5}\) is the 5th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{5}\).

\(\displaystyle \boldsymbol{\phi}_{64} = \left(\begin{array}{c}\displaystyle 18 y z \left(- 2 x y + 2 x + y - 1\right)\\\displaystyle 18 x z \left(2 x y - x - 2 y + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.
\(\displaystyle l_{65}:\mathbf{v}\mapsto\displaystyle\int_{f_{5}}\left(\begin{array}{c}\displaystyle 2 s_{1}\\\displaystyle 0\\\displaystyle 0\end{array}\right)\cdot\mathbf{v}\)
where \(f_{5}\) is the 5th face;
and \((s_{0},s_{1})\) is a parametrisation of \(f_{5}\).

\(\displaystyle \boldsymbol{\phi}_{65} = \left(\begin{array}{c}\displaystyle 30 y z \left(- 2 y^{2} + 3 y - 1\right)\\\displaystyle 0\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 5 of the reference element.

References

DefElement stats

Element added07 October 2021
Element last updated07 October 2021