an encyclopedia of finite element definitions

Wu–Xu

Click here to read what the information on this page means.

Degreesinterval: \(k=2\)
triangle: \(k=3\)
tetrahedron: \(k=4\)
Polynomial subdegreeinterval: \(k + 1\)
triangle: \(k\)
tetrahedron: \(k\)
Polynomial superdegree\(k+1\)
Lagrange subdegreeinterval: \(k + 1\)
triangle: \(k\)
tetrahedron: \(k\)
Lagrange superdegree\(k+1\)
Reference elementsinterval, triangle, tetrahedron
Polynomial set\(\mathcal{P}_{k-1} \oplus \mathcal{Z}^{(52)}_{k}\) (interval)
\(\mathcal{P}_{k-1} \oplus \mathcal{Z}^{(53)}_{k}\) (triangle)
\(\mathcal{P}_{k-1} \oplus \mathcal{Z}^{(54)}_{k}\) (tetrahedron)
↓ Show polynomial set definitions ↓
DOFsOn each vertex: point evaluations
On each edge: integrals of normal derivatives
On each face: integrals of normal derivatives
On each volume: integrals of normal derivatives
Number of DOFsinterval: \(4\)
triangle: \(12\)
tetrahedron: \(38\)
Mappingidentity
continuityFunction values are continuous.
CategoriesScalar-valued elements

Implementations

This element is implemented in Symfem .↓ Show implementation detail ↓

Examples

interval
degree 2

(click to view basis functions)
triangle
degree 3

(click to view basis functions)
tetrahedron
degree 4

(click to view basis functions)

References

DefElement stats

Element added08 June 2021
Element last updated27 September 2024