an encyclopedia of finite element definitions

Degree 1 Guzmán–Neilan on a triangle

◀ Back to Guzmán–Neilan definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}-1\\-1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{0} = \begin{cases} \left(\begin{array}{c}\displaystyle \tfrac{3 x y}{2} - x - \tfrac{9 y^{2}}{4} + \tfrac{5 y}{4}\\\displaystyle \tfrac{y \left(1 - 3 y\right)}{4}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle \tfrac{x \left(1 - 3 x\right)}{4}\\\displaystyle \tfrac{x \left(- 9 x + 6 y + 1\right)}{4}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - \tfrac{3 x^{2}}{4} + \tfrac{3 x y}{2} - \tfrac{3 x}{4} + \tfrac{3 y^{2}}{4} - \tfrac{5 y}{4} + \tfrac{1}{2}\\\displaystyle \tfrac{3 x^{2}}{4} + \tfrac{3 x y}{2} - \tfrac{x}{4} - \tfrac{3 y^{2}}{4} + \tfrac{5 y}{4} - \tfrac{1}{2}\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}-1\\-1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{1} = \begin{cases} \left(\begin{array}{c}\displaystyle \tfrac{y \left(6 x - 9 y + 1\right)}{4}\\\displaystyle \tfrac{y \left(1 - 3 y\right)}{4}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle \tfrac{x \left(1 - 3 x\right)}{4}\\\displaystyle - \tfrac{9 x^{2}}{4} + \tfrac{3 x y}{2} + \tfrac{5 x}{4} - y\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - \tfrac{3 x^{2}}{4} + \tfrac{3 x y}{2} + \tfrac{5 x}{4} + \tfrac{3 y^{2}}{4} - \tfrac{y}{4} - \tfrac{1}{2}\\\displaystyle \tfrac{3 x^{2}}{4} + \tfrac{3 x y}{2} - \tfrac{5 x}{4} - \tfrac{3 y^{2}}{4} - \tfrac{3 y}{4} + \tfrac{1}{2}\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{2} = \begin{cases} \left(\begin{array}{c}\displaystyle x - \tfrac{3 y^{2}}{2} + \tfrac{5 y}{2} - 1\\\displaystyle 0\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle \tfrac{3 x^{2}}{2} - \tfrac{x}{2} - 3 y^{2} + 4 y - 1\\\displaystyle 3 x \left(x - y\right)\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - \tfrac{9 x^{2}}{2} - 12 x y + \tfrac{17 x}{2} - \tfrac{15 y^{2}}{2} + \tfrac{23 y}{2} - 4\\\displaystyle 3 x^{2} + 9 x y - 6 x + 6 y^{2} - 9 y + 3\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}-1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{3} = \begin{cases} \left(\begin{array}{c}\displaystyle \tfrac{y \left(1 - 3 y\right)}{2}\\\displaystyle 0\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle \tfrac{3 x^{2}}{2} - \tfrac{3 x}{2} - 3 y^{2} + 2 y\\\displaystyle 3 x^{2} - 3 x y - x + y\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - \tfrac{9 x^{2}}{2} - 12 x y + \tfrac{15 x}{2} - \tfrac{15 y^{2}}{2} + \tfrac{19 y}{2} - 3\\\displaystyle 3 x^{2} + 9 x y - 5 x + 6 y^{2} - 7 y + 2\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{4} = \begin{cases} \left(\begin{array}{c}\displaystyle 3 y \left(x - y\right)\\\displaystyle 3 x^{2} - 4 x - \tfrac{3 y^{2}}{2} + \tfrac{y}{2} + 1\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 0\\\displaystyle \tfrac{3 x^{2}}{2} - \tfrac{5 x}{2} - y + 1\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - 6 x^{2} - 9 x y + 9 x - 3 y^{2} + 6 y - 3\\\displaystyle \tfrac{15 x^{2}}{2} + 12 x y - \tfrac{23 x}{2} + \tfrac{9 y^{2}}{2} - \tfrac{17 y}{2} + 4\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{5} = \begin{cases} \left(\begin{array}{c}\displaystyle 3 x y - x - 3 y^{2} + y\\\displaystyle 3 x^{2} - 2 x - \tfrac{3 y^{2}}{2} + \tfrac{3 y}{2}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 0\\\displaystyle \tfrac{x \left(3 x - 1\right)}{2}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - 6 x^{2} - 9 x y + 7 x - 3 y^{2} + 5 y - 2\\\displaystyle \tfrac{15 x^{2}}{2} + 12 x y - \tfrac{19 x}{2} + \tfrac{9 y^{2}}{2} - \tfrac{15 y}{2} + 3\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0.

\(\displaystyle \boldsymbol{\phi}_{6} = \begin{cases} \left(\begin{array}{c}\displaystyle \tfrac{y \left(- 6 x + 9 y - 1\right)}{2}\\\displaystyle \tfrac{y \left(3 y - 1\right)}{2}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle \tfrac{x \left(3 x - 1\right)}{2}\\\displaystyle \tfrac{x \left(9 x - 6 y - 1\right)}{2}\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle \tfrac{3 x^{2}}{2} - 3 x y - \tfrac{5 x}{2} - \tfrac{3 y^{2}}{2} + \tfrac{y}{2} + 1\\\displaystyle - \tfrac{3 x^{2}}{2} - 3 x y + \tfrac{x}{2} + \tfrac{3 y^{2}}{2} - \tfrac{5 y}{2} + 1\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1.

\(\displaystyle \boldsymbol{\phi}_{7} = \begin{cases} \left(\begin{array}{c}\displaystyle y \left(3 y - 1\right)\\\displaystyle 0\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - 3 x^{2} + 5 x + 6 y^{2} - 6 y\\\displaystyle 6 x \left(- x + y\right)\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 9 x^{2} + 24 x y - 17 x + 15 y^{2} - 23 y + 8\\\displaystyle - 6 x^{2} - 18 x y + 12 x - 12 y^{2} + 18 y - 6\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2.

\(\displaystyle \boldsymbol{\phi}_{8} = \begin{cases} \left(\begin{array}{c}\displaystyle 6 y \left(- x + y\right)\\\displaystyle - 6 x^{2} + 6 x + 3 y^{2} - 5 y\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(1 - 3 x\right)\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 12 x^{2} + 18 x y - 18 x + 6 y^{2} - 12 y + 6\\\displaystyle - 15 x^{2} - 24 x y + 23 x - 9 y^{2} + 17 y - 8\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{3},\tfrac{1}{3})\cdot\left(\begin{array}{c}1\\0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{9} = \begin{cases} \left(\begin{array}{c}\displaystyle 3 y\\\displaystyle 0\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 3 x\\\displaystyle 0\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle - 3 x - 3 y + 3\\\displaystyle 0\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{3},\tfrac{1}{3})\cdot\left(\begin{array}{c}0\\1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{10} = \begin{cases} \left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 y\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 0\\\displaystyle 3 x\end{array}\right)&\text{in }\operatorname{Triangle}(((0, 0), (0, 1), (1/3, 1/3)))\\\left(\begin{array}{c}\displaystyle 0\\\displaystyle - 3 x - 3 y + 3\end{array}\right)&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\end{cases}\)

This DOF is associated with face 0 of the reference element.