an encyclopedia of finite element definitions

Degree 3 Lagrange on a quadrilateral

◀ Back to Lagrange definition page
In this example:
\(\displaystyle l_{0}:v\mapsto v(0,0)\)

\(\displaystyle \phi_{0} = x y - x - y + 1\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto v(1,0)\)

\(\displaystyle \phi_{1} = x \left(1 - y\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{2}:v\mapsto v(0,1)\)

\(\displaystyle \phi_{2} = y \left(1 - x\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{3}:v\mapsto v(1,1)\)

\(\displaystyle \phi_{3} = x y\)

This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{4}:\mathbf{v}\mapsto\displaystyle\int_{e_{0}}(\sqrt{3} \cdot \left(60 s_{0}^{2} - 60 s_{0} + 10\right))v\)
where \(e_{0}\) is the 0th edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \phi_{4} = \sqrt{3} x \left(- x y + x + y - 1\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{5}:\mathbf{v}\mapsto\displaystyle\int_{e_{0}}(\sqrt{5} \cdot \left(280 s_{0}^{3} - 420 s_{0}^{2} + 168 s_{0} - 14\right))v\)
where \(e_{0}\) is the 0th edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{0}\).

\(\displaystyle \phi_{5} = \sqrt{5} x \left(- 2 x^{2} y + 2 x^{2} + 3 x y - 3 x - y + 1\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{6}:\mathbf{v}\mapsto\displaystyle\int_{e_{1}}(\sqrt{3} \cdot \left(60 s_{0}^{2} - 60 s_{0} + 10\right))v\)
where \(e_{1}\) is the 1st edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \phi_{6} = \sqrt{3} y \left(- x y + x + y - 1\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{7}:\mathbf{v}\mapsto\displaystyle\int_{e_{1}}(\sqrt{5} \cdot \left(280 s_{0}^{3} - 420 s_{0}^{2} + 168 s_{0} - 14\right))v\)
where \(e_{1}\) is the 1st edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{1}\).

\(\displaystyle \phi_{7} = \sqrt{5} y \left(- 2 x y^{2} + 3 x y - x + 2 y^{2} - 3 y + 1\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{8}:\mathbf{v}\mapsto\displaystyle\int_{e_{2}}(\sqrt{3} \cdot \left(60 s_{0}^{2} - 60 s_{0} + 10\right))v\)
where \(e_{2}\) is the 2nd edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \phi_{8} = \sqrt{3} x y \left(y - 1\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{9}:\mathbf{v}\mapsto\displaystyle\int_{e_{2}}(\sqrt{5} \cdot \left(280 s_{0}^{3} - 420 s_{0}^{2} + 168 s_{0} - 14\right))v\)
where \(e_{2}\) is the 2nd edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{2}\).

\(\displaystyle \phi_{9} = \sqrt{5} x y \left(2 y^{2} - 3 y + 1\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{10}:\mathbf{v}\mapsto\displaystyle\int_{e_{3}}(\sqrt{3} \cdot \left(60 s_{0}^{2} - 60 s_{0} + 10\right))v\)
where \(e_{3}\) is the 3rd edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \phi_{10} = \sqrt{3} x y \left(x - 1\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{11}:\mathbf{v}\mapsto\displaystyle\int_{e_{3}}(\sqrt{5} \cdot \left(280 s_{0}^{3} - 420 s_{0}^{2} + 168 s_{0} - 14\right))v\)
where \(e_{3}\) is the 3rd edge;
and \(s_{0},s_{1}\) is a parametrisation of \(e_{3}\).

\(\displaystyle \phi_{11} = \sqrt{5} x y \left(2 x^{2} - 3 x + 1\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{12}:\mathbf{v}\mapsto\displaystyle\int_{R}(10800 s_{0}^{2} s_{1}^{2} - 10800 s_{0}^{2} s_{1} + 1800 s_{0}^{2} - 10800 s_{0} s_{1}^{2} + 10800 s_{0} s_{1} - 1800 s_{0} + 1800 s_{1}^{2} - 1800 s_{1} + 300)v\)
where \(R\) is the reference element;
and \(s_{0},s_{1}\) is a parametrisation of \(R\).

\(\displaystyle \phi_{12} = 3 x y \left(x y - x - y + 1\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{13}:\mathbf{v}\mapsto\displaystyle\int_{R}(\sqrt{15} \cdot \left(16800 s_{0}^{2} s_{1}^{3} - 25200 s_{0}^{2} s_{1}^{2} + 10080 s_{0}^{2} s_{1} - 840 s_{0}^{2} - 16800 s_{0} s_{1}^{3} + 25200 s_{0} s_{1}^{2} - 10080 s_{0} s_{1} + 840 s_{0} + 2800 s_{1}^{3} - 4200 s_{1}^{2} + 1680 s_{1} - 140\right))v\)
where \(R\) is the reference element;
and \(s_{0},s_{1}\) is a parametrisation of \(R\).

\(\displaystyle \phi_{13} = \sqrt{15} x y \left(2 x y^{2} - 3 x y + x - 2 y^{2} + 3 y - 1\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{14}:\mathbf{v}\mapsto\displaystyle\int_{R}(\sqrt{15} \cdot \left(16800 s_{0}^{3} s_{1}^{2} - 16800 s_{0}^{3} s_{1} + 2800 s_{0}^{3} - 25200 s_{0}^{2} s_{1}^{2} + 25200 s_{0}^{2} s_{1} - 4200 s_{0}^{2} + 10080 s_{0} s_{1}^{2} - 10080 s_{0} s_{1} + 1680 s_{0} - 840 s_{1}^{2} + 840 s_{1} - 140\right))v\)
where \(R\) is the reference element;
and \(s_{0},s_{1}\) is a parametrisation of \(R\).

\(\displaystyle \phi_{14} = \sqrt{15} x y \left(2 x^{2} y - 2 x^{2} - 3 x y + 3 x + y - 1\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{15}:\mathbf{v}\mapsto\displaystyle\int_{R}(392000 s_{0}^{3} s_{1}^{3} - 588000 s_{0}^{3} s_{1}^{2} + 235200 s_{0}^{3} s_{1} - 19600 s_{0}^{3} - 588000 s_{0}^{2} s_{1}^{3} + 882000 s_{0}^{2} s_{1}^{2} - 352800 s_{0}^{2} s_{1} + 29400 s_{0}^{2} + 235200 s_{0} s_{1}^{3} - 352800 s_{0} s_{1}^{2} + 141120 s_{0} s_{1} - 11760 s_{0} - 19600 s_{1}^{3} + 29400 s_{1}^{2} - 11760 s_{1} + 980)v\)
where \(R\) is the reference element;
and \(s_{0},s_{1}\) is a parametrisation of \(R\).

\(\displaystyle \phi_{15} = 5 x y \left(4 x^{2} y^{2} - 6 x^{2} y + 2 x^{2} - 6 x y^{2} + 9 x y - 3 x + 2 y^{2} - 3 y + 1\right)\)

This DOF is associated with face 0 of the reference element.