an encyclopedia of finite element definitions

Degree 0 Arnold–Boffi–Falk on a quadrilateral

◀ Back to Arnold–Boffi–Falk definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{n}}_{0}\) is the normal to facet 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 3 x \left(x - 1\right)\\\displaystyle 3 y^{2} - 4 y + 1\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{n}}_{1}\) is the normal to facet 1.

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - 3 x^{2} + 4 x - 1\\\displaystyle 3 y \left(1 - y\right)\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{n}}_{2}\) is the normal to facet 2.

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x \left(3 x - 4\right)\\\displaystyle 3 y \left(y - 1\right)\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1)\hat{\boldsymbol{n}}_{3}\)
where \(e_{3}\) is the 3rd edge;
and \(\hat{\boldsymbol{n}}_{3}\) is the normal to facet 3.

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 3 x \left(1 - x\right)\\\displaystyle y \left(4 - 3 y\right)\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{4}:\mathbf{v}\mapsto\displaystyle\int_{R}(s_{0})\nabla\cdot\mathbf{v}\)
where \(R\) is the reference element;
and \(s_{0},s_{1}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 6 x \left(x - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{5}:\mathbf{v}\mapsto\displaystyle\int_{R}(s_{1})\nabla\cdot\mathbf{v}\)
where \(R\) is the reference element;
and \(s_{0},s_{1}\) is a parametrisation of \(R\).

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 6 y \left(y - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.