Bubble enriched Lagrange
Click here to read what the information on this page means.
Orders | \(1\leqslant k\leqslant 2\) |
Reference elements | triangle |
Polynomial set | \(\mathcal{P}_{k} \oplus \mathcal{Z}^{(13)}_{k+2}\) ↓ Show polynomial set definitions ↓↑ Hide polynomial set definitions ↑\(\mathcal{P}_k=\operatorname{span}\left\{\prod_{i=1}^dx_i^{p_i}\middle|\sum_{i=1}^dp_i\leqslant k\right\}\)
\(\mathcal{Z}^{(13)}_k=\left\{p\in \mathcal{P}_{k}\middle|p=0\text{ on the boundary}\right\}\) |
DOFs | On each vertex: point evaluations
On each edge: point evaluations
On each face: point evaluations |
Number of DOFs | triangle: \((k+1)^2\) (A000290) |
Categories | Scalar-valued elements |
Implementations
Symfem | "bubble enriched Lagrange" ↓ Show Symfem examples ↓↑ Hide Symfem examples ↑Before trying this example, you must install Symfem: pip3 install symfem This element can then be created with the following lines of Python: import symfem
# Create bubble enriched Lagrange order 1 on a triangle element = symfem.create_element("triangle", "bubble enriched Lagrange", 1)
# Create bubble enriched Lagrange order 2 on a triangle element = symfem.create_element("triangle", "bubble enriched Lagrange", 2) |
Examples
triangle
order 1triangle
order 2
- \(R\) is the reference triangle. The following numbering of the subentities of the reference is used:
- \(\mathcal{V}\) is spanned by: \(1\), \(x\), \(y\), \(x y \left(- x - y + 1\right)\)
- \(\mathcal{L}=\{l_0,...,l_{3}\}\)
- Functionals and basis functions:
\(\displaystyle l_{0}:v\mapsto v(0,0)\)
\(\displaystyle \phi_{0} = 9 x^{2} y + 9 x y^{2} - 9 x y - x - y + 1\)
This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto v(1,0)\)
\(\displaystyle \phi_{1} = x \left(9 x y + 9 y^{2} - 9 y + 1\right)\)
This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{2}:v\mapsto v(0,1)\)
\(\displaystyle \phi_{2} = y \left(9 x^{2} + 9 x y - 9 x + 1\right)\)
This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{3}:v\mapsto v(\tfrac{1}{3},\tfrac{1}{3})\)
\(\displaystyle \phi_{3} = 27 x y \left(- x - y + 1\right)\)
This DOF is associated with face 0 of the reference element.
- \(R\) is the reference triangle. The following numbering of the subentities of the reference is used:
- \(\mathcal{V}\) is spanned by: \(1\), \(x\), \(x^{2}\), \(y\), \(x y\), \(y^{2}\), \(x y \left(- x - y + 1\right)\), \(x^{2} y \left(- x - y + 1\right)\), \(x y^{2} \left(- x - y + 1\right)\)
- \(\mathcal{L}=\{l_0,...,l_{8}\}\)
- Functionals and basis functions:
\(\displaystyle l_{0}:v\mapsto v(0,0)\)
\(\displaystyle \phi_{0} = - 16 x^{3} y - 32 x^{2} y^{2} + 24 x^{2} y + 2 x^{2} - 16 x y^{3} + 24 x y^{2} - 4 x y - 3 x + 2 y^{2} - 3 y + 1\)
This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto v(1,0)\)
\(\displaystyle \phi_{1} = x \left(16 x^{2} y + 16 x y^{2} - 24 x y + 2 x - 8 y^{2} + 8 y - 1\right)\)
This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{2}:v\mapsto v(0,1)\)
\(\displaystyle \phi_{2} = y \left(16 x^{2} y - 8 x^{2} + 16 x y^{2} - 24 x y + 8 x + 2 y - 1\right)\)
This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{3}:v\mapsto v(\tfrac{1}{2},\tfrac{1}{2})\)
\(\displaystyle \phi_{3} = 4 x y \left(8 x^{2} + 16 x y - 10 x + 8 y^{2} - 10 y + 3\right)\)
This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{4}:v\mapsto v(0,\tfrac{1}{2})\)
\(\displaystyle \phi_{4} = 4 y \left(- 8 x^{3} - 8 x^{2} y + 14 x^{2} + 6 x y - 7 x - y + 1\right)\)
This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{5}:v\mapsto v(\tfrac{1}{2},0)\)
\(\displaystyle \phi_{5} = 4 x \left(- 8 x y^{2} + 6 x y - x - 8 y^{3} + 14 y^{2} - 7 y + 1\right)\)
This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:v\mapsto v(\tfrac{1}{4},\tfrac{1}{4})\)
\(\displaystyle \phi_{6} = 32 x y \left(4 x^{2} + 8 x y - 7 x + 4 y^{2} - 7 y + 3\right)\)
This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{7}:v\mapsto v(\tfrac{1}{4},\tfrac{1}{2})\)
\(\displaystyle \phi_{7} = 32 x y \left(- 4 x y + x - 4 y^{2} + 5 y - 1\right)\)
This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{8}:v\mapsto v(\tfrac{1}{2},\tfrac{1}{4})\)
\(\displaystyle \phi_{8} = 32 x y \left(- 4 x^{2} - 4 x y + 5 x + y - 1\right)\)
This DOF is associated with face 0 of the reference element.
DefElement stats
Element added | 02 March 2021 |
Element last updated | 21 April 2021 |