an encyclopedia of finite element definitions

Degree 1 P1 macro on a triangle

◀ Back to P1 macro definition page
In this example:
\(\displaystyle l_{0}:v\mapsto v(0,0)\)

\(\displaystyle \phi_{0} = \begin{cases} - x - 2 y + 1&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\0&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\\- 2 x - y + 1&\text{in }\operatorname{Triangle}(((0, 1), (0, 0), (1/3, 1/3)))\end{cases}\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto v(1,0)\)

\(\displaystyle \phi_{1} = \begin{cases} x - y&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\2 x + y - 1&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\\0&\text{in }\operatorname{Triangle}(((0, 1), (0, 0), (1/3, 1/3)))\end{cases}\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{2}:v\mapsto v(0,1)\)

\(\displaystyle \phi_{2} = \begin{cases} 0&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\x + 2 y - 1&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\\- x + y&\text{in }\operatorname{Triangle}(((0, 1), (0, 0), (1/3, 1/3)))\end{cases}\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{3}:\mathbf{v}\mapsto\displaystyle\int_{R}v\)
where \(R\) is the reference element.

\(\displaystyle \phi_{3} = \begin{cases} 6 y&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (1/3, 1/3)))\\- 6 x - 6 y + 6&\text{in }\operatorname{Triangle}(((1, 0), (0, 1), (1/3, 1/3)))\\6 x&\text{in }\operatorname{Triangle}(((0, 1), (0, 0), (1/3, 1/3)))\end{cases}\)

This DOF is associated with face 0 of the reference element.