an encyclopedia of finite element definitions

Degree 2 vector bubble enriched Lagrange on a triangle

◀ Back to vector bubble enriched Lagrange definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 16 x^{3} y - 32 x^{2} y^{2} + 24 x^{2} y + 2 x^{2} - 16 x y^{3} + 24 x y^{2} - 4 x y - 3 x + 2 y^{2} - 3 y + 1\\\displaystyle 0\end{array}\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 16 x^{3} y - 32 x^{2} y^{2} + 24 x^{2} y + 2 x^{2} - 16 x y^{3} + 24 x y^{2} - 4 x y - 3 x + 2 y^{2} - 3 y + 1\end{array}\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x \left(16 x^{2} y + 16 x y^{2} - 24 x y + 2 x - 8 y^{2} + 8 y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x \left(16 x^{2} y + 16 x y^{2} - 24 x y + 2 x - 8 y^{2} + 8 y - 1\right)\end{array}\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y \left(16 x^{2} y - 8 x^{2} + 16 x y^{2} - 24 x y + 8 x + 2 y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y \left(16 x^{2} y - 8 x^{2} + 16 x y^{2} - 24 x y + 8 x + 2 y - 1\right)\end{array}\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 4 x y \left(8 x^{2} + 16 x y - 10 x + 8 y^{2} - 10 y + 3\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x y \left(8 x^{2} + 16 x y - 10 x + 8 y^{2} - 10 y + 3\right)\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2})\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 4 y \left(- 8 x^{3} - 8 x^{2} y + 14 x^{2} + 6 x y - 7 x - y + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,\tfrac{1}{2})\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 y \left(- 8 x^{3} - 8 x^{2} y + 14 x^{2} + 6 x y - 7 x - y + 1\right)\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0)\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 4 x \left(- 8 x y^{2} + 6 x y - x - 8 y^{3} + 14 y^{2} - 7 y + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},0)\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 x \left(- 8 x y^{2} + 6 x y - x - 8 y^{3} + 14 y^{2} - 7 y + 1\right)\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{12}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{4},\tfrac{1}{4})\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle 32 x y \left(4 x^{2} + 8 x y - 7 x + 4 y^{2} - 7 y + 3\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{13}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{4},\tfrac{1}{4})\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 32 x y \left(4 x^{2} + 8 x y - 7 x + 4 y^{2} - 7 y + 3\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{14}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{4},\tfrac{1}{2})\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 32 x y \left(- 4 x y + x - 4 y^{2} + 5 y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{15}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{4},\tfrac{1}{2})\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 32 x y \left(- 4 x y + x - 4 y^{2} + 5 y - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{16}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{4})\cdot\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 32 x y \left(- 4 x^{2} - 4 x y + 5 x + y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{17}:\boldsymbol{v}\mapsto\boldsymbol{v}(\tfrac{1}{2},\tfrac{1}{4})\cdot\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)\)

\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 32 x y \left(- 4 x^{2} - 4 x y + 5 x + y - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.