an encyclopedia of finite element definitions

Degree 1 Nédélec (second kind) on a triangle

◀ Back to Nédélec (second kind) definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 2 y\\\displaystyle 4 x\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle - 4 y\\\displaystyle - 2 x\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle - 2 y\\\displaystyle - 4 x - 6 y + 4\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 4 y\\\displaystyle 2 x + 6 y - 2\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle - 6 x - 4 y + 4\\\displaystyle - 2 x\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 6 x + 2 y - 2\\\displaystyle 4 x\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.