an encyclopedia of finite element definitions

# Degree 2 Morley on a triangle

◀ Back to Morley definition page In this example:
• $$R$$ is the reference triangle. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$1$$, $$x$$, $$x^{2}$$, $$y$$, $$x y$$, $$y^{2}$$
• $$\mathcal{L}=\{l_0,...,l_{5}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:v\mapsto v(0,0)$$

$$\displaystyle \phi_{0} = 2 x y - x - y + 1$$

This DOF is associated with vertex 0 of the reference element. $$\displaystyle l_{1}:v\mapsto v(1,0)$$

$$\displaystyle \phi_{1} = \frac{x^{2}}{2} - x y + \frac{x}{2} - \frac{y^{2}}{2} + \frac{y}{2}$$

This DOF is associated with vertex 1 of the reference element. $$\displaystyle l_{2}:v\mapsto v(0,1)$$

$$\displaystyle \phi_{2} = - \frac{x^{2}}{2} - x y + \frac{x}{2} + \frac{y^{2}}{2} + \frac{y}{2}$$

This DOF is associated with vertex 2 of the reference element. $$\displaystyle l_{3}:v\mapsto\nabla{v}(\tfrac{1}{2},\tfrac{1}{2})\cdot\hat{\boldsymbol{n}}_{0}$$
where $$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0.

$$\displaystyle \phi_{3} = \frac{\sqrt{2} \left(- x^{2} - 2 x y + x - y^{2} + y\right)}{2}$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{4}:v\mapsto\nabla{v}(0,\tfrac{1}{2})\cdot\hat{\boldsymbol{n}}_{1}$$
where $$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1.

$$\displaystyle \phi_{4} = x \left(x - 1\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{5}:v\mapsto\nabla{v}(\tfrac{1}{2},0)\cdot\hat{\boldsymbol{n}}_{2}$$
where $$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2.

$$\displaystyle \phi_{5} = y \left(1 - y\right)$$

This DOF is associated with edge 2 of the reference element.