an encyclopedia of finite element definitions

Degree 3 Hermite on a tetrahedron

◀ Back to Hermite definition page
In this example:
\(\displaystyle l_{0}:v\mapsto v(0,0,0)\)

\(\displaystyle \phi_{0} = 2 x^{3} + 13 x^{2} y + 13 x^{2} z - 3 x^{2} + 13 x y^{2} + 33 x y z - 13 x y + 13 x z^{2} - 13 x z + 2 y^{3} + 13 y^{2} z - 3 y^{2} + 13 y z^{2} - 13 y z + 2 z^{3} - 3 z^{2} + 1\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto\frac{\partial}{\partial x}v(0,0,0)\)

\(\displaystyle \phi_{1} = x \left(x^{2} + 3 x y + 3 x z - 2 x + 2 y^{2} + 4 y z - 3 y + 2 z^{2} - 3 z + 1\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{2}:v\mapsto\frac{\partial}{\partial y}v(0,0,0)\)

\(\displaystyle \phi_{2} = y \left(2 x^{2} + 3 x y + 4 x z - 3 x + y^{2} + 3 y z - 2 y + 2 z^{2} - 3 z + 1\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{3}:v\mapsto\frac{\partial}{\partial z}v(0,0,0)\)

\(\displaystyle \phi_{3} = z \left(2 x^{2} + 4 x y + 3 x z - 3 x + 2 y^{2} + 3 y z - 3 y + z^{2} - 2 z + 1\right)\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{4}:v\mapsto v(1,0,0)\)

\(\displaystyle \phi_{4} = x \left(- 2 x^{2} + 7 x y + 7 x z + 3 x + 7 y^{2} + 7 y z - 7 y + 7 z^{2} - 7 z\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{5}:v\mapsto\frac{\partial}{\partial x}v(1,0,0)\)

\(\displaystyle \phi_{5} = x \left(x^{2} - 2 x y - 2 x z - x - 2 y^{2} - 2 y z + 2 y - 2 z^{2} + 2 z\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{6}:v\mapsto\frac{\partial}{\partial y}v(1,0,0)\)

\(\displaystyle \phi_{6} = x y \left(2 x + y - 1\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{7}:v\mapsto\frac{\partial}{\partial z}v(1,0,0)\)

\(\displaystyle \phi_{7} = x z \left(2 x + z - 1\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{8}:v\mapsto v(0,1,0)\)

\(\displaystyle \phi_{8} = y \left(7 x^{2} + 7 x y + 7 x z - 7 x - 2 y^{2} + 7 y z + 3 y + 7 z^{2} - 7 z\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{9}:v\mapsto\frac{\partial}{\partial x}v(0,1,0)\)

\(\displaystyle \phi_{9} = x y \left(x + 2 y - 1\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{10}:v\mapsto\frac{\partial}{\partial y}v(0,1,0)\)

\(\displaystyle \phi_{10} = y \left(- 2 x^{2} - 2 x y - 2 x z + 2 x + y^{2} - 2 y z - y - 2 z^{2} + 2 z\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{11}:v\mapsto\frac{\partial}{\partial z}v(0,1,0)\)

\(\displaystyle \phi_{11} = y z \left(2 y + z - 1\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{12}:v\mapsto v(0,0,1)\)

\(\displaystyle \phi_{12} = z \left(7 x^{2} + 7 x y + 7 x z - 7 x + 7 y^{2} + 7 y z - 7 y - 2 z^{2} + 3 z\right)\)

This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{13}:v\mapsto\frac{\partial}{\partial x}v(0,0,1)\)

\(\displaystyle \phi_{13} = x z \left(x + 2 z - 1\right)\)

This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{14}:v\mapsto\frac{\partial}{\partial y}v(0,0,1)\)

\(\displaystyle \phi_{14} = y z \left(y + 2 z - 1\right)\)

This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{15}:v\mapsto\frac{\partial}{\partial z}v(0,0,1)\)

\(\displaystyle \phi_{15} = z \left(- 2 x^{2} - 2 x y - 2 x z + 2 x - 2 y^{2} - 2 y z + 2 y + z^{2} - z\right)\)

This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{16}:v\mapsto v(\tfrac{1}{3},\tfrac{1}{3},\tfrac{1}{3})\)

\(\displaystyle \phi_{16} = 27 x y z\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{17}:v\mapsto v(0,\tfrac{1}{3},\tfrac{1}{3})\)

\(\displaystyle \phi_{17} = 27 y z \left(- x - y - z + 1\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{18}:v\mapsto v(\tfrac{1}{3},0,\tfrac{1}{3})\)

\(\displaystyle \phi_{18} = 27 x z \left(- x - y - z + 1\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{19}:v\mapsto v(\tfrac{1}{3},\tfrac{1}{3},0)\)

\(\displaystyle \phi_{19} = 27 x y \left(- x - y - z + 1\right)\)

This DOF is associated with face 3 of the reference element.