an encyclopedia of finite element definitions

Degree 2 Nédélec (first kind) on a tetrahedron

◀ Back to Nédélec (first kind) definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 z \left(1 - 4 y\right)\\\displaystyle 4 y \left(2 y - 1\right)\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 4 z \left(1 - 2 z\right)\\\displaystyle 2 y \left(4 z - 1\right)\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 2 z \left(1 - 4 x\right)\\\displaystyle 0\\\displaystyle 4 x \left(2 x - 1\right)\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 4 z \left(1 - 2 z\right)\\\displaystyle 0\\\displaystyle 2 x \left(4 z - 1\right)\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 2 y \left(1 - 4 x\right)\\\displaystyle 4 x \left(2 x - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 4 y \left(1 - 2 y\right)\\\displaystyle 2 x \left(4 y - 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
and \(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3.

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 2 z \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 2 z \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 8 x^{2} + 16 x y + 8 x z - 12 x + 8 y^{2} + 8 y z - 12 y - 6 z + 4\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
and \(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3.

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 4 z \left(2 z - 1\right)\\\displaystyle 4 z \left(2 z - 1\right)\\\displaystyle - 8 x z + 2 x - 8 y z + 2 y + 6 z - 2\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
and \(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4.

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 2 y \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 8 x^{2} + 8 x y + 16 x z - 12 x + 8 y z - 6 y + 8 z^{2} - 12 z + 4\\\displaystyle 2 y \left(- 4 x - 4 y - 4 z + 3\right)\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{4}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{4}\)
where \(e_{4}\) is the 4th edge;
and \(\hat{\boldsymbol{t}}_{4}\) is the tangent to edge 4.

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 4 y \left(2 y - 1\right)\\\displaystyle - 8 x y + 2 x - 8 y z + 6 y + 2 z - 2\\\displaystyle 4 y \left(2 y - 1\right)\end{array}\right)\)

This DOF is associated with edge 4 of the reference element.
\(\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
and \(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5.

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 8 x y + 8 x z - 6 x + 8 y^{2} + 16 y z - 12 y + 8 z^{2} - 12 z + 4\\\displaystyle 2 x \left(- 4 x - 4 y - 4 z + 3\right)\\\displaystyle 2 x \left(- 4 x - 4 y - 4 z + 3\right)\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{5}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{5}\)
where \(e_{5}\) is the 5th edge;
and \(\hat{\boldsymbol{t}}_{5}\) is the tangent to edge 5.

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle - 8 x y - 8 x z + 6 x + 2 y + 2 z - 2\\\displaystyle 4 x \left(2 x - 1\right)\\\displaystyle 4 x \left(2 x - 1\right)\end{array}\right)\)

This DOF is associated with edge 5 of the reference element.
\(\displaystyle l_{12}:v\mapsto\displaystyle\int_{f_{0}}(\left(\begin{array}{c}\displaystyle - \frac{\sqrt{3}}{3}\\\displaystyle \frac{\sqrt{3}}{3}\\\displaystyle 0\end{array}\right))v\)
where \(f_{0}\) is the 0th face.

\(\displaystyle \boldsymbol{\phi}_{12} = \left(\begin{array}{c}\displaystyle - 8 y z\\\displaystyle 16 x z\\\displaystyle - 8 x y\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{13}:v\mapsto\displaystyle\int_{f_{0}}(\left(\begin{array}{c}\displaystyle - \frac{\sqrt{3}}{3}\\\displaystyle 0\\\displaystyle \frac{\sqrt{3}}{3}\end{array}\right))v\)
where \(f_{0}\) is the 0th face.

\(\displaystyle \boldsymbol{\phi}_{13} = \left(\begin{array}{c}\displaystyle - 8 y z\\\displaystyle - 8 x z\\\displaystyle 16 x y\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{14}:v\mapsto\displaystyle\int_{f_{1}}(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right))v\)
where \(f_{1}\) is the 1st face.

\(\displaystyle \boldsymbol{\phi}_{14} = \left(\begin{array}{c}\displaystyle 8 y z\\\displaystyle 8 z \left(- 2 x - y - 2 z + 2\right)\\\displaystyle 8 y \left(x + y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{15}:v\mapsto\displaystyle\int_{f_{1}}(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right))v\)
where \(f_{1}\) is the 1st face.

\(\displaystyle \boldsymbol{\phi}_{15} = \left(\begin{array}{c}\displaystyle 8 y z\\\displaystyle 8 z \left(x + 2 y + z - 1\right)\\\displaystyle 8 y \left(- 2 x - 2 y - z + 2\right)\end{array}\right)\)

This DOF is associated with face 1 of the reference element.
\(\displaystyle l_{16}:v\mapsto\displaystyle\int_{f_{2}}(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right))v\)
where \(f_{2}\) is the 2nd face.

\(\displaystyle \boldsymbol{\phi}_{16} = \left(\begin{array}{c}\displaystyle 8 z \left(- x - 2 y - 2 z + 2\right)\\\displaystyle 8 x z\\\displaystyle 8 x \left(x + y + 2 z - 1\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{17}:v\mapsto\displaystyle\int_{f_{2}}(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 0\\\displaystyle 1\end{array}\right))v\)
where \(f_{2}\) is the 2nd face.

\(\displaystyle \boldsymbol{\phi}_{17} = \left(\begin{array}{c}\displaystyle 8 z \left(2 x + y + z - 1\right)\\\displaystyle 8 x z\\\displaystyle 8 x \left(- 2 x - 2 y - z + 2\right)\end{array}\right)\)

This DOF is associated with face 2 of the reference element.
\(\displaystyle l_{18}:v\mapsto\displaystyle\int_{f_{3}}(\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\\\displaystyle 0\end{array}\right))v\)
where \(f_{3}\) is the 3th face.

\(\displaystyle \boldsymbol{\phi}_{18} = \left(\begin{array}{c}\displaystyle 8 y \left(- x - 2 y - 2 z + 2\right)\\\displaystyle 8 x \left(x + 2 y + z - 1\right)\\\displaystyle 8 x y\end{array}\right)\)

This DOF is associated with face 3 of the reference element.
\(\displaystyle l_{19}:v\mapsto\displaystyle\int_{f_{3}}(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\\\displaystyle 0\end{array}\right))v\)
where \(f_{3}\) is the 3th face.

\(\displaystyle \boldsymbol{\phi}_{19} = \left(\begin{array}{c}\displaystyle 8 y \left(2 x + y + z - 1\right)\\\displaystyle 8 x \left(- 2 x - y - 2 z + 2\right)\\\displaystyle 8 x y\end{array}\right)\)

This DOF is associated with face 3 of the reference element.