an encyclopedia of finite element definitions

# Degree 1 vector dPc on a quadrilateral

◀ Back to vector dPc definition page
In this example:
• $$R$$ is the reference quadrilateral. The following numbering of the subentities of the reference is used:
• $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{5}\}$$
• Functionals and basis functions:
$$\displaystyle l_{0}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - x - y + 1\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{1}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - x - y + 1\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{2}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{3}:\boldsymbol{v}\mapsto\boldsymbol{v}(1,0)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{4}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}1\\0\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.
$$\displaystyle l_{5}:\boldsymbol{v}\mapsto\boldsymbol{v}(0,1)\cdot\left(\begin{array}{c}0\\1\end{array}\right)$$

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$

This DOF is associated with face 0 of the reference element.