an encyclopedia of finite element definitions

# Degree 2 Q H(div) on a quadrilateral

◀ Back to Q H(div) definition page In this example:
• $$R$$ is the reference quadrilateral. The following numbering of the subentities of the reference is used:
• • $$\mathcal{V}$$ is spanned by: $$\left(\begin{array}{c}\displaystyle 1\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x^{2}\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle x^{2} y\\\displaystyle 0\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle y^{2}\end{array}\right)$$, $$\left(\begin{array}{c}\displaystyle 0\\\displaystyle x y^{2}\end{array}\right)$$
• $$\mathcal{L}=\{l_0,...,l_{11}\}$$
• Functionals and basis functions: $$\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 18 x y^{2} + 24 x y - 6 x + 12 y^{2} - 16 y + 4\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{0}$$
where $$e_{0}$$ is the 0th edge;
$$\hat{\boldsymbol{n}}_{0}$$ is the normal to facet 0;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{0}$$.

$$\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 18 x y^{2} - 24 x y + 6 x - 6 y^{2} + 8 y - 2\end{array}\right)$$

This DOF is associated with edge 0 of the reference element. $$\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 18 x^{2} y - 12 x^{2} - 24 x y + 16 x + 6 y - 4\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{1}$$
where $$e_{1}$$ is the 1st edge;
$$\hat{\boldsymbol{n}}_{1}$$ is the normal to facet 1;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{1}$$.

$$\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle - 18 x^{2} y + 6 x^{2} + 24 x y - 8 x - 6 y + 2\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 1 of the reference element. $$\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 2 x \left(9 x y - 6 x - 6 y + 4\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element. $$\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{2}$$
where $$e_{2}$$ is the 2nd edge;
$$\hat{\boldsymbol{n}}_{2}$$ is the normal to facet 2;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{2}$$.

$$\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 2 x \left(- 9 x y + 3 x + 6 y - 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with edge 2 of the reference element. $$\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{n}}_{3}$$
where $$e_{3}$$ is the 3rd edge;
$$\hat{\boldsymbol{n}}_{3}$$ is the normal to facet 3;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 y \left(- 9 x y + 6 x + 6 y - 4\right)\end{array}\right)$$

This DOF is associated with edge 3 of the reference element. $$\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{n}}_{3}$$
where $$e_{3}$$ is the 3rd edge;
$$\hat{\boldsymbol{n}}_{3}$$ is the normal to facet 3;
and $$s_{0},s_{1}$$ is a parametrisation of $$e_{3}$$.

$$\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 y \left(9 x y - 6 x - 3 y + 2\right)\end{array}\right)$$

This DOF is associated with edge 3 of the reference element. $$\displaystyle l_{8}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}1 - s_{1}\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$s_{0},s_{1}$$ is a parametrisation of $$R$$.

$$\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 12 x \left(3 x y - 2 x - 3 y + 2\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element. $$\displaystyle l_{9}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\1 - s_{0}\end{array}\right)$$
where $$R$$ is the reference element;
and $$s_{0},s_{1}$$ is a parametrisation of $$R$$.

$$\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 y \left(3 x y - 3 x - 2 y + 2\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element. $$\displaystyle l_{10}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}0\\s_{0}\end{array}\right)$$
where $$R$$ is the reference element;
and $$s_{0},s_{1}$$ is a parametrisation of $$R$$.

$$\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 y \left(- 3 x y + 3 x + y - 1\right)\end{array}\right)$$

This DOF is associated with face 0 of the reference element. $$\displaystyle l_{11}:\boldsymbol{v}\mapsto\displaystyle\int_{R}\boldsymbol{v}\cdot\left(\begin{array}{c}s_{1}\\0\end{array}\right)$$
where $$R$$ is the reference element;
and $$s_{0},s_{1}$$ is a parametrisation of $$R$$.

$$\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 12 x \left(- 3 x y + x + 3 y - 1\right)\\\displaystyle 0\end{array}\right)$$

This DOF is associated with face 0 of the reference element.