an encyclopedia of finite element definitions

Degree 2 Gauss–Legendre on a quadrilateral

◀ Back to Gauss–Legendre definition page
In this example:
\(\displaystyle l_{0}:v\mapsto v(0,0)\)

\(\displaystyle \phi_{0} = 4 x^{2} y^{2} - 6 x^{2} y + 2 x^{2} - 6 x y^{2} + 9 x y - 3 x + 2 y^{2} - 3 y + 1\)

This DOF is associated with vertex 0 of the reference element.
\(\displaystyle l_{1}:v\mapsto v(1,0)\)

\(\displaystyle \phi_{1} = x \left(4 x y^{2} - 6 x y + 2 x - 2 y^{2} + 3 y - 1\right)\)

This DOF is associated with vertex 1 of the reference element.
\(\displaystyle l_{2}:v\mapsto v(0,1)\)

\(\displaystyle \phi_{2} = y \left(4 x^{2} y - 2 x^{2} - 6 x y + 3 x + 2 y - 1\right)\)

This DOF is associated with vertex 2 of the reference element.
\(\displaystyle l_{3}:v\mapsto v(1,1)\)

\(\displaystyle \phi_{3} = x y \left(4 x y - 2 x - 2 y + 1\right)\)

This DOF is associated with vertex 3 of the reference element.
\(\displaystyle l_{4}:v\mapsto v(\tfrac{1}{2},0)\)

\(\displaystyle \phi_{4} = 4 x \left(- 2 x y^{2} + 3 x y - x + 2 y^{2} - 3 y + 1\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{5}:v\mapsto v(0,\tfrac{1}{2})\)

\(\displaystyle \phi_{5} = 4 y \left(- 2 x^{2} y + 2 x^{2} + 3 x y - 3 x - y + 1\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{6}:v\mapsto v(1,\tfrac{1}{2})\)

\(\displaystyle \phi_{6} = 4 x y \left(- 2 x y + 2 x + y - 1\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{7}:v\mapsto v(\tfrac{1}{2},1)\)

\(\displaystyle \phi_{7} = 4 x y \left(- 2 x y + x + 2 y - 1\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{8}:v\mapsto v(\tfrac{1}{2},\tfrac{1}{2})\)

\(\displaystyle \phi_{8} = 16 x y \left(x y - x - y + 1\right)\)

This DOF is associated with face 0 of the reference element.