an encyclopedia of finite element definitions

Degree 2 Nédélec (first kind) on a quadrilateral

◀ Back to Nédélec (first kind) definition page
In this example:
\(\displaystyle l_{0}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{0} = \left(\begin{array}{c}\displaystyle - 18 x y^{2} + 24 x y - 6 x + 12 y^{2} - 16 y + 4\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{1}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{0}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{0}\)
where \(e_{0}\) is the 0th edge;
and \(\hat{\boldsymbol{t}}_{0}\) is the tangent to edge 0.

\(\displaystyle \boldsymbol{\phi}_{1} = \left(\begin{array}{c}\displaystyle 18 x y^{2} - 24 x y + 6 x - 6 y^{2} + 8 y - 2\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 0 of the reference element.
\(\displaystyle l_{2}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{2} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle - 18 x^{2} y + 12 x^{2} + 24 x y - 16 x - 6 y + 4\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{3}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{1}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{1}\)
where \(e_{1}\) is the 1st edge;
and \(\hat{\boldsymbol{t}}_{1}\) is the tangent to edge 1.

\(\displaystyle \boldsymbol{\phi}_{3} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 18 x^{2} y - 6 x^{2} - 24 x y + 8 x + 6 y - 2\end{array}\right)\)

This DOF is associated with edge 1 of the reference element.
\(\displaystyle l_{4}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{4} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x \left(- 9 x y + 6 x + 6 y - 4\right)\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{5}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{2}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{2}\)
where \(e_{2}\) is the 2nd edge;
and \(\hat{\boldsymbol{t}}_{2}\) is the tangent to edge 2.

\(\displaystyle \boldsymbol{\phi}_{5} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 2 x \left(9 x y - 3 x - 6 y + 2\right)\end{array}\right)\)

This DOF is associated with edge 2 of the reference element.
\(\displaystyle l_{6}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(1 - s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
and \(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3.

\(\displaystyle \boldsymbol{\phi}_{6} = \left(\begin{array}{c}\displaystyle 2 y \left(- 9 x y + 6 x + 6 y - 4\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{7}:\boldsymbol{v}\mapsto\displaystyle\int_{e_{3}}\boldsymbol{v}\cdot(s_{0})\hat{\boldsymbol{t}}_{3}\)
where \(e_{3}\) is the 3th edge;
and \(\hat{\boldsymbol{t}}_{3}\) is the tangent to edge 3.

\(\displaystyle \boldsymbol{\phi}_{7} = \left(\begin{array}{c}\displaystyle 2 y \left(9 x y - 6 x - 3 y + 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with edge 3 of the reference element.
\(\displaystyle l_{8}:v\mapsto\displaystyle\int_{R}(\left(\begin{array}{c}\displaystyle 0\\\displaystyle 1 - s_{1}\end{array}\right))v\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{8} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x \left(3 x y - 2 x - 3 y + 2\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{9}:v\mapsto\displaystyle\int_{R}(\left(\begin{array}{c}\displaystyle s_{0} - 1\\\displaystyle 0\end{array}\right))v\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{9} = \left(\begin{array}{c}\displaystyle 12 y \left(- 3 x y + 3 x + 2 y - 2\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{10}:v\mapsto\displaystyle\int_{R}(\left(\begin{array}{c}\displaystyle - s_{0}\\\displaystyle 0\end{array}\right))v\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{10} = \left(\begin{array}{c}\displaystyle 12 y \left(3 x y - 3 x - y + 1\right)\\\displaystyle 0\end{array}\right)\)

This DOF is associated with face 0 of the reference element.
\(\displaystyle l_{11}:v\mapsto\displaystyle\int_{R}(\left(\begin{array}{c}\displaystyle 0\\\displaystyle s_{1}\end{array}\right))v\)
where \(R\) is the reference element.

\(\displaystyle \boldsymbol{\phi}_{11} = \left(\begin{array}{c}\displaystyle 0\\\displaystyle 12 x \left(- 3 x y + x + 3 y - 1\right)\end{array}\right)\)

This DOF is associated with face 0 of the reference element.