an encyclopedia of finite element definitions

# Degree 0 dual polynomial on a dual polygon

◀ Back to dual polynomial definition page
In this example:
• $$R$$ is the reference dual polygon. The following numbering of the subentities of the reference is used:
• Basis functions:
$$\displaystyle \phi_{0} = \begin{cases} 1&\text{in }\operatorname{Triangle}(((0, 0), (1, 0), (3/4, sqrt(3)/4)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (3/4, sqrt(3)/4), (1/2, sqrt(3)/2)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (1/2, sqrt(3)/2), (0, sqrt(3)/2)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (0, sqrt(3)/2), (-1/2, sqrt(3)/2)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (-1/2, sqrt(3)/2), (-3/4, sqrt(3)/4)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (-3/4, sqrt(3)/4), (-1, 0)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (-1, 0), (-3/4, -sqrt(3)/4)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (-3/4, -sqrt(3)/4), (-1/2, -sqrt(3)/2)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (-1/2, -sqrt(3)/2), (0, -sqrt(3)/2)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (0, -sqrt(3)/2), (1/2, -sqrt(3)/2)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (1/2, -sqrt(3)/2), (3/4, -sqrt(3)/4)))\\1&\text{in }\operatorname{Triangle}(((0, 0), (3/4, -sqrt(3)/4), (1, 0)))\end{cases}$$